共查询到20条相似文献,搜索用时 15 毫秒
1.
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = −3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes. 相似文献
2.
The process of aging results in a host of changes at the cellular and molecular levels, which include senescence, telomere shortening, and changes in gene expression. Epigenetic patterns also change over the lifespan, suggesting that epigenetic changes may constitute an important component of the aging process. The epigenetic mark that has been most highly studied is DNA methylation, the presence of methyl groups at CpG dinucleotides. These dinucleotides are often located near gene promoters and associate with gene expression levels. Early studies indicated that global levels of DNA methylation increase over the first few years of life and then decrease beginning in late adulthood. Recently, with the advent of microarray and next‐generation sequencing technologies, increases in variability of DNA methylation with age have been observed, and a number of site‐specific patterns have been identified. It has also been shown that certain CpG sites are highly associated with age, to the extent that prediction models using a small number of these sites can accurately predict the chronological age of the donor. Together, these observations point to the existence of two phenomena that both contribute to age‐related DNA methylation changes: epigenetic drift and the epigenetic clock. In this review, we focus on healthy human aging throughout the lifetime and discuss the dynamics of DNA methylation as well as how interactions between the genome, environment, and the epigenome influence aging rates. We also discuss the impact of determining ‘epigenetic age’ for human health and outline some important caveats to existing and future studies. 相似文献
3.
Parisa Tehranifar Hui-Chen Wu Jasmine A. McDonald Farzana Jasmine Regina M. Santella Irina Gurvich 《Epigenetics》2018,13(2):129-134
Maternal smoking in pregnancy (MSP) has been associated with DNA methylation in specific CpG sites (CpGs) in infants and children. We investigated whether MSP, independent of own personal active smoking, was associated with midlife DNA methylation in CpGs that were previously identified in studies of MSP-DNA methylation in children. We used data on MSP collected from pregnant mothers of 89 adult women born in 1959–1964 and measured DNA methylation in blood (granulocytes) collected in 2001–2007 (mean age: 43 years). Seventeen CpGs were differentially methylated by MSP, with multiple CpGs mapping to CYP1A1, MYO1G, AHRR, and GFI1. These associations were consistent in direction with prior studies (e.g., MSP associated with more and less methylation in AHRR and CYP1A1, respectively) and, with the exception of AHRR CpGs, were not substantially altered by adjustment for active smoking. These preliminary results confirm prior prospective reports that MSP influences the offspring DNA methylation, and extends the timeframe to midlife, and suggest that these effects may persist into adulthood, independently of active smoking. 相似文献
4.
5.
DNA methylation at stress‐related genes is associated with exposure to early life institutionalization 下载免费PDF全文
Amy L. Non Brittany M. Hollister Kathryn L. Humphreys Ainash Childebayeva Kyle Esteves Charles H. Zeanah Nathan A. Fox Charles A. Nelson Stacy S. Drury 《American journal of physical anthropology》2016,161(1):84-93
6.
7.
We investigated the impact of maternal smoking during pregnancy on placental DNA methylation and how this may mediate the association between maternal smoking and pro-inflammatory proteins in cord blood. The study population consisted of 27 individuals exposed to maternal smoking throughout pregnancy, 32 individuals exposed during a proportion of the pregnancy, and 61 unexposed individuals. Methylation of 11 regions within 6 genes in placenta tissue was assessed by pyrosequencing. Levels of 7 pro-inflammatory proteins in cord blood were assessed by electrochemiluminescence. Differential methylation was observed in the CYP1A1 promoter and AHRR gene body regions between women who smoked throughout pregnancy and non-smokers on the fetal-side of the placenta and in the GFI1 promoter between women who quit smoking while pregnant and non-smokers on the maternal-side of the placenta. Maternal smoking resulted in elevated levels of IL-8 protein in cord blood, which was not mediated by DNA methylation of our candidate regions at either the maternal or the fetal side of the placenta. Placental DNA methylation was associated with levels of inflammatory proteins in cord blood. Our observations suggest that maternal smoking during pregnancy affects both placental DNA methylation and the neonate's immune response. 相似文献
8.
DNA甲基化和去甲基化的研究现状及思考 总被引:1,自引:0,他引:1
DNA甲基化通过调节基因转录、印记、X染色体灭活和防御外源性遗传物质入侵等, 在细胞分化、胚胎发育、环境适应和疾病发生发展上发挥重要作用, 是当前表观遗传学研究的热点领域之一。文章介绍了在过去几年中TET介导的DNA羟甲基化及其在早期胚胎发育中的作用, DNA主动去甲基化及其与被动去甲基化的关系, DNA甲基化建立及其与组蛋白修饰、染色质构象、多梳蛋白和非编码RNA结合等关系方面的重要研究进展和存在的问题以及DNA甲基化的转化应用前景。 相似文献
9.
10.
11.
12.
13.
为了适应复杂多变的生存环境,微生物通常需要在保证基因组序列不变的前提下不断调整胞内代谢网络。表观调控可以在不改变DNA序列的情况下对基因表达进行调控,因此成为细菌中重要的调控方式。作为一种DNA修饰,DNA甲基化修饰是生物体中最常见的表观调控工具。在本文中我们全面、深入解析了两种孤儿甲基转移酶:DNA腺嘌呤甲基转移酶(DNA adenine methyltransferase,Dam)和细胞周期调控甲基转移酶(Cell cycle-regulated methyltransferase,Ccr M)在原核生物中的表观调控功能。我们主要探讨了DNA甲基化参与的细胞生理过程包括DNA复制起始、DNA错配修复、基因表达调控、致病性和相变异等方面。同时,我们结合三维基因组研究技术基因组结构捕获(Chromosome conformation capture,3C)技术和新型DNA磷硫酰化修饰讨论了该领域的发展前景。 相似文献
14.
Epigenetic variation is increasingly hypothesized as a mechanism underlying the effect of the in utero environment on long-term postnatal health; however, there is currently little clear data to support this in humans. A number of biological and technical factors provide challenges for the design of clinical epigenetic studies: from the type of cells or tissues that are available to the large range of predicted confounders that may impact findings. The human placenta, in addition to other neonatal tissues and whole blood, is commonly sampled for the study of epigenetic modifications. However there is little conformity for the most appropriate methods for study design, data analysis, and importantly, data interpretation. Here we present general recommendations for the reporting of DNA methylation in biological samples, with specific focus on the placenta. We outline key guidelines for: (1) placental sampling, (2) data analysis and presentation, and (3) interpretation of DNA methylation data. We emphasize the need to consider methodological noise, increase statistical power and to ensure appropriate adjustment for biological covariates. Finally, we highlight that epigenetic changes may be non-pathological and not necessarily translate into disease-associated changes. Improved reporting of DNA methylation data will be critical to identify epigenetic-based effects and to better understand the full phenotypic impact of these widely-reported epigenomic changes. 相似文献
15.
Lonie Morin‐Dor Patrick Blondin Christian Vigneault Franois‐Xavier Grand Rmi Labrecque Marc‐Andr Sirard 《Molecular reproduction and development》2020,87(8):910-924
In the dairy industry, the high selection pressure combined with the increased efficiency of assisted reproduction technologies (ART) are leading toward the use of younger females for reproduction purposes, with the aim to reduce the interval between generations. This situation could impair embryo quality, decreasing the success rate of the ART procedures and the values of resulting offspring. Young Holstein heifers (n = 10) were subjected to ovarian stimulation and oocyte collection at 8, 11, and 14 months of age. All the oocytes were fertilized in vitro with semen from one adult bull, generating three pools of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used to compare the DNA methylation status of blastocysts obtained from oocytes collected at 8 versus 14 and 11 versus 14 months of age. Age‐related contrast analysis identified 5,787 and 3,658 differentially methylated regions (DMRs) in blastocysts from heifers at 8 versus 14 and 11 versus 14 months of age, respectively. For both contrasts, the DMRs were distributed nonrandomly in the different DNA regions. The DNA from embryos from 8‐month‐old donors was more hypermethylated, while the DNA from embryos from 11‐month‐old donors displayed an intermediate phenotype. According to Ingenuity Pathway Analysis, the upstream regulator genes cellular tumor antigen p53, transforming growth factor β1, tumor necrosis factor, and hepatocyte nuclear factor 4α are particularly associated with methylation sensitive targets, which were more hypermethylated in embryos from younger donors. 相似文献
16.
Jamie A. Hackett M. Azim Surani 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1609)
DNA methylation is dynamically remodelled during the mammalian life cycle through distinct phases of reprogramming and de novo methylation. These events enable the acquisition of cellular potential followed by the maintenance of lineage-restricted cell identity, respectively, a process that defines the life cycle through successive generations. DNA methylation contributes to the epigenetic regulation of many key developmental processes including genomic imprinting, X-inactivation, genome stability and gene regulation. Emerging sequencing technologies have led to recent insights into the dynamic distribution of DNA methylation during development and the role of this epigenetic mark within distinct genomic contexts, such as at promoters, exons or imprinted control regions. Additionally, there is a better understanding of the mechanistic basis of DNA demethylation during epigenetic reprogramming in primordial germ cells and during pre-implantation development. Here, we discuss our current understanding of the developmental roles and dynamics of this key epigenetic system. 相似文献
17.
《Epigenetics》2013,8(1):31-39
Osteosarcoma is the most common primary malignant bone tumor in children. Validated biological markers for disease prognosis available at diagnosis are lacking. No genome-wide DNA methylation studies linked to clinical outcomes have been reported in osteosarcoma to the best of our knowledge. To address this, we tested the methylome at over 1.1 million loci in 15 osteosarcoma biopsy samples obtained prior to the initiation of therapy and correlated these molecular data with disease outcomes. At more than 17% of the tested loci, samples obtained from patients who experienced disease relapse were more methylated than those from patients who did not have recurrence while patients who did not experience disease relapse had more DNA methylation at fewer than 1%. In samples from patients who went on to have recurrent disease, increased DNA methylation was found at gene bodies, intergenic regions and empirically-annotated candidate enhancers, whereas candidate gene promoters were unusual for a more balanced distribution of increased and decreased DNA methylation with 6.6% of gene promoter loci being more methylated and 2% of promoter loci being less methylated in patients with disease relapse. A locus at the TLR4 gene demonstrates one of strongest associations between DNA methylation and 5 y event-free survival (P-value = 1.7 × 10?6), with empirical annotation of this locus showing promoter characteristics. Our data indicate that DNA methylation information has the potential to be predictive of outcome in pediatric osteosarcoma, and that both promoters and non-promoter loci are potentially informative in DNA methylation studies. 相似文献
18.
Dean W Lucifero D Santos F 《Birth defects research. Part C, Embryo today : reviews》2005,75(2):98-111
Epigenetic modification of the cytosine base of DNA by its methylation introduced the possibility that beyond the inherent information contained within the nucleotide sequence there was an additional layer of information added to the underlying genetic code. DNA methylation has been implicated in a wide range of biological functions, including an essential developmental role in the reprogramming of germ cells and early embryos, the repression of endogenous retrotransposons, and a generalized role in gene expression. Special functions of DNA methylation include the marking of one of the parental alleles of many imprinted genes, a group of genes essential for growth and development in mammals with a unique parent-of-origin expression pattern, a role in stabilizing X-chromosome inactivation, and centromere function. In this regard, it is not surprising that errors in establishing or maintaining patterns of methylation are associated with a diverse group of human diseases and syndromes. 相似文献
19.
Jeremy M Rosenblum N Ari Wijetunga Melissa J Fazzari Mark Krailo Donald A Barkauskas Richard Gorlick John M Greally 《Epigenetics》2015,10(1):31-39
Osteosarcoma is the most common primary malignant bone tumor in children. Validated biological markers for disease prognosis available at diagnosis are lacking. No genome-wide DNA methylation studies linked to clinical outcomes have been reported in osteosarcoma to the best of our knowledge. To address this, we tested the methylome at over 1.1 million loci in 15 osteosarcoma biopsy samples obtained prior to the initiation of therapy and correlated these molecular data with disease outcomes. At more than 17% of the tested loci, samples obtained from patients who experienced disease relapse were more methylated than those from patients who did not have recurrence while patients who did not experience disease relapse had more DNA methylation at fewer than 1%. In samples from patients who went on to have recurrent disease, increased DNA methylation was found at gene bodies, intergenic regions and empirically-annotated candidate enhancers, whereas candidate gene promoters were unusual for a more balanced distribution of increased and decreased DNA methylation with 6.6% of gene promoter loci being more methylated and 2% of promoter loci being less methylated in patients with disease relapse. A locus at the TLR4 gene demonstrates one of strongest associations between DNA methylation and 5 y event-free survival (P-value = 1.7 × 10−6), with empirical annotation of this locus showing promoter characteristics. Our data indicate that DNA methylation information has the potential to be predictive of outcome in pediatric osteosarcoma, and that both promoters and non-promoter loci are potentially informative in DNA methylation studies. 相似文献
20.
Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers
Stefanie Seisenberger Julian R. Peat Timothy A. Hore Fátima Santos Wendy Dean Wolf Reik 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1609)
In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine. 相似文献