首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

2.
Abstract. Until the 1960s, species-rich vegetation on minero-trophic peaty soüs (fen sites) were characteristic of the alluvial plains in Schleswig-Holstein (Northwest Germany). Today, many of these habitats undergo successional changes due to abandonment. Vegetation development after abandonment can be characterized as a sequence of different successional stages and described in terms of a successional model. Successional stage I includes grazed, mown and recently abandoned sites without dominants. Stages II and III are characterized by the dominance of highly competitive herbaceous species whüe stage IV consists of woody vegetation. Ca. 3000 phytosociological relevés were assigned to the respective successional stages. Mean cover values were calculated for 250 species of the regional fen flora and assigned to successional categories according to their changes in cover in the successional series. According to our results 141 species decrease during succession, while 100 species were restricted to early successional stages and 85 species increased. Abandonment of all fen sites in Schleswig-Holstein will probably lead to the regional loss of 23 species of the fen flora. To identify mechanisms underlying successional change, the successional categories were correlated with life history traits and ecological requirements of the species. Results indicate that both light competition and limitation of sexual reproduction of small-seeded species might play a major role in the decrease and extinction of species during succession. Finally, conservation strategies for endangered species in a cultural landscape are discussed.  相似文献   

3.
Summary In many ecosystems, increases in vegetation density and the resulting closure of forest canopies are threatening the viability of species that depend upon open, sunlight‐exposed habitats. Consequently, we need to develop management strategies that recreate open habitats while minimizing the impacts on non‐target areas. Selective logging creates canopy gaps, but may result in undesirable effects in other respects. Thus, chainsaws have not been a popular tool for conservation. We conducted a landscape‐scale experiment to test whether selective tree removal can restore patch‐level habitat quality for Australia’s most endangered snake (Hoplocephalus bungaroides) and its main prey (the lizard Oedura lesueurii). We selectively removed canopy trees surrounding 25 overgrown rock outcrops and compared the resultant habitat structure and abiotic conditions to 30 overgrown, shady outcrops and 20 open, sunny outcrops. Removing vegetation decreased canopy cover by 19% in experimental plots and increased incident radiation and thermal regimes. These changes increased the availability of suitable shelter sites for our target species by 131%. At the landscape scale, our manipulations had a trivial effect on forest habitat; by increasing the area of sun‐exposed outcrops, we decreased forest cover by <0.1%. Our results show that targeted canopy removal can increase the availability of sun‐exposed habitat patches for endangered species in biologically meaningful ways. Thus, selective tree felling may be an effective conservation tool for open‐habitat specialists threatened by vegetation overgrowth.  相似文献   

4.
The east‐coast free‐tailed bat Mormopterus norfolkensis Gray, 1839 is a threatened insectivorous bat that is poorly known and as such conservation management strategies are only broadly prescribed. Insectivorous bats that use human‐modified landscapes are often adapted to foraging in open microhabitats. However, few studies have explored whether open‐adapted bats select landscapes with more of these microhabitat features. We compared three morphologically similar and sympatric, molossid bats (genus Mormopterus) with different conservation status in terms of their association with vegetation, climate, landform and land‐use attributes at landscape and local habitat element scales. We predicted that these species would use similar landscape types, with semi‐cleared and low density urban landscapes used more than forested and heavily cleared landscapes. Additionally, we explored which environmental variables best explained the occurrence of each species by constructing post‐hoc models and habitat suitability maps. Contrary to predictions, we found that the three species varied in their habitat use with no one landscape type used more extensively than other types. Overall, M. norfolkensis was more likely to occur in low‐lying, non‐urban, riparian habitats with little vegetation cover. Mormopterus species 2 occupied similar habitats, but was more tolerant of urban landscapes. In contrast, Mormopterus species 4 occurred more often in cleared than forested landscapes, particularly dry landscapes with little vegetation cover. The extensive use of coastal floodplains by the threatened M. norfolkensis is significant because these habitats are under increasing pressure from human land‐uses and the predicted increase in urbanization is likely to further reduce the amount of suitable habitat.  相似文献   

5.
The long history of human influence on northern temperate landscapes has created a mosaic of successional stages, from closed forest to open grassland. Various species thus adapted to different habitats and it is interesting to explore how these differences in species composition among particular successional stages translate into differences at the community level. For this purpose, we surveyed breeding birds in 233 patches of five different habitats covering a gradient from bare ground to forest in 29 abandoned military training sites scattered throughout the Czech Republic. Linear mixed effects modelling revealed that late-successional habitats (dense scrubland and forest) were the most species-rich, whereas early-successional stages hosted bird communities with the highest habitat specialization and threat level. These results suggest that the habitats of late-successional stages are important for the maintenance of high bird species richness, but that early-successional habitats are essential for highly specialized and threatened bird species. Given the highly adverse impacts of agricultural intensification and land abandonment on open habitats, it is necessary to promote factors creating initial successional stages suitable for specialized and threatened species.  相似文献   

6.
Aim Urbanization is associated with strong changes in biodiversity, but the diversity of plant and animal assemblages varies among urban habitats. We studied effects of urban habitats on the diversity of vascular plants and land snails in 32 large cities. Location Central Europe, Belgium and the Netherlands. Methods The species composition of all vascular plants that had not been planted by humans, and all land snails, was recorded in seven 1‐ha plots within each city. Each plot contained one urban habitat type representing a different disturbance regime: historical city square, boulevard, residential area with compact building pattern, residential area with open building pattern, park, early successional and mid‐successional site. For each plot, we obtained temperature and precipitation data. The effects of climate and habitat types on species composition were quantified using ordination methods with an adjusted variation partitioning algorithm. Differences in species composition among urban habitats were described using statistically determined diagnostic species, and differences in alpha, beta and gamma diversity were quantified. Results A total of 1196 plant and 87 snail species were recorded. Habitat type explained higher proportions of the total variation in both plant and snail species composition (11.2 and 8.2%, respectively) than did climate (4.6 and 6.3%). For both taxa, the main differences in species composition were observed between strongly urbanized sites in city centres and early successional and mid‐successional sites. For vascular plants, the number of species was lowest in city squares and boulevards, and highest at successional sites and in residential areas with compact building patterns. Beta diversity of vascular plants calculated for the same habitat types among cities was highest for squares and successional sites. The number of snail species was lowest in city squares and at early successional sites, and highest at mid‐successional sites. The highest beta diversity of snail assemblages among cities was observed within the city square and early successional habitat types, and the lowest within residential area habitat types. Main conclusions Urban habitats differ notably in the diversity of their vascular plant flora and land snail fauna. Understanding the habitat‐related biodiversity patterns in urbanized landscapes will allow projections of future impacts of urban land‐use changes on the biota.  相似文献   

7.
Aim Two main mechanisms may explain post‐disturbance species colonization patterns of early successional habitats such as those originated by wildfires. First, post‐disturbance colonization is not limited by the dispersal ability of the species to reach the newly created open areas and, secondly, colonization is limited by dispersal. Under the first hypothesis, we expect, at a regional scale, to find similar post‐disturbance communities to develop on recently burned sites. However, colonization limited by dispersal will lead to strong between‐site variations in species composition. Location To test these hypotheses, we studied the post‐fire colonization patterns of nine open‐habitat bird species in eight distantly located wildfires in the north‐eastern Iberian Peninsula. Methods We censused post‐fire bird composition by means of field transects and identified potential colonization sources from species–habitat suitability maps derived from atlas data. Results Our results showed strong significant differences in post‐fire species composition between burnt areas. Burnt areas located in areas with low probability of species presence before the fire event showed lower species occurrence and richness after the fire. Main conclusions These results do not support the idea that early successional stages and open habitats have a homogeneous community structure at regional scales and suggest that dispersal is a key constraint determining bird colonization of post‐fire habitats. Further attention should be paid to landscape heterogeneity as a key factor in determining population dynamics of open‐habitat species in the light of current and future land‐use changes in Mediterranean regions.  相似文献   

8.
Abstract. This is the first quantitative study of seed bank characteristics in North American alvar habitats. We assessed seed bank density, species richness, and species composition in 75 plots distributed among five alvar sites in Bruce Peninsula National Park, Ontario, Canada, each of which displayed areas of high and low vegetation cover within the alvar and a fully forested perimeter area. Forested habitats immediately adjacent to alvar patches contained minimal seed banks for species restricted to the alvar patches. Open alvars contained less than 1% seeds from woody forest species. This suggests that forest is not invading adjacent alvar habitat via seeds and that adjacent forest does not contain a reservoir of alvar seeds. When compared to areas on the alvar with high vascular plant cover, areas with low cover contained a slightly smaller viable seed bank, but seed banks from high and low vegetation cover plots had similar species composition and species richness. High vegetation cover plots had slightly higher mean and maximum soil depths compared with low cover plots, but no differences in other physical and chemical parameters. Thus, spatial heterogeneity in plant cover is associated only weakly with heterogeneity in below‐ground factors. Despite the availability of seed and soil resources, vegetation dynamics are constrained in areas with low plant cover, and thus alvar community development seems to respond non‐linearly to resource availability.  相似文献   

9.
Abstract. Closed canopy vegetation often prevents the colonization of plant species. Therefore the majority of plant species are expected to appear at the initial phase of post‐agricultural succession in mesic forest environment with moderate levels of resources. This hypothesis was tested with data from the Buell‐Small Successional Study, NJ, USA, one of the longest continuous fine‐scale studies of old‐field succession. The study started in 1958, including old fields with different agricultural histories, landscape contexts, and times of abandonment. In each year of the study, the cover values of plant species were recorded in 48 permanent plots of 1 m2 in each field. We analysed the temporal patterns of colonization at plot scale and related these to precipitation data and other community characteristics. The number of colonizing species decreased significantly after ca. 5 yr, coinciding with the development of a continuous canopy of perennial species. However, species turnover remained high throughout the whole successional sequence. The most remarkable phenomenon is the high inter‐annual variation of all studied characteristics. We found considerable temporal collapses of vegetation cover that were synchronized among fields despite their different developmental stages and distinctive species compositions. Declines of total cover were correlated with drought events. These events were associated with peaks of local species extinctions and were followed by increased colonization rates. The transitions of major successional stages were often connected to these events. We suggest that plant colonization windows opened by extreme weather events during succession offer optimum periods for intervention in restoration practice.  相似文献   

10.
11.
Abstract. The decline of species‐rich semi‐natural calcareous grasslands is a major conservation problem throughout Europe. Maintenance of traditional animal husbandry is often recommended as an important management strategy. However, results that underpin such management recommendations were derived predominantly from lowland studies and may not be easily applicable to high mountain areas. In this study we analyse the importance of traditional low‐intensity summer farming (cattle grazing) for vascular plant species diversity of a subalpine region in the northern calcareous Alps in Austria by resampling from an existing dataset on its vegetation. Results indicate a significant long term decline of plant species diversity following abandonment at the landscape scale. In contrast, within‐community effects of pasture abandonment on plant species diversity are equivocal and strongly depend on the plant community. We suppose these differences to be due to diet preferences of cattle as well as to the differential importance of competition for structuring the respective communities. From our results we infer that the main mechanism by which pasture abandonment affects vascular plant species diversity, at least during the first ca. 100 yr documented here, are not local‐scale competitive exclusion processes within persisting communities. Instead, post‐abandonment successional community displacements that cause a landscape scale homogenization of the vegetation cover seem to be primarily responsible for a decline of species diversity. We conclude, that successful management of vascular plant species diversity in subalpine regions of the Northeastern Calcareous Alps will depend on the maintenance of large scale pasture systems with a spatially variable disturbance regime.  相似文献   

12.
Questions: Are negative invasion–diversity relationships due to biotic resistance of the invaded plant community or to post‐invasion displacement of less competitive species? Do invasion–diversity relationships change with habitat type or resident traits? Location/species: Lowlands and uplands of western and southern Germany, Heracleum mantegazzianum; mountain range in central Germany, Lupinus polyphyllus; and coastal dunes of northwest Germany, Rosa rugosa. Methods: We tested the significance and estimated regression slopes of invasion–diversity relationships using generalized linear (mixed effects) models relating invader cover and habitat type to species richness in different plant groups, stratified based on size, life cycle and community association. Results: We found negative, positive and neutral relationships between invader cover and species richness. There were negative linear correlations of invader cover with small plant species throughout, but no negative linear correlation with tall species. Invasion–diversity relationships tended to be more negative in early‐successional habitats, such as dunes or abandoned grasslands, than in late‐successional habitats. Conclusions: Invasion diversity–relationships are complex; they vary among habitat types and among different groups of resident species. Negative invasion–diversity relationships are due to asymmetric competitive displacement of inferior species and not due to biotic resistance. Small species are displaced in early‐successional habitats, while there is little effect on persistence of tall species.  相似文献   

13.
We investigated species richness of ground dwelling beetle assemblages in two non-reclaimed lignite mines and a dump in Central Germany by means of pitfall trapping. During a period of five months, a total of 203 beetle species within 27 families represented by 4099 individuals were trapped. This included 75 species of ground beetles represented in a sample of 957 individuals from which 10 species are regionally endangered. The number of individuals, species richness, as well as the proportions of endangered species did not differ between successional stages whereas species composition of sites could be related well to a set of environmental variables. High values of beta-diversity between sites indicated that the total number of species recorded is caused by habitat diversity. From the viewpoint of nature conservation, we conclude that postmining areas can play a key role in conservation of beetle diversity in agricultural areas since they harbour threatened species whose original habitats are now rare due to human impact. An important task for future management of postmining areas is to maintain successional processes and to prevent loss of habitat diversity through afforestation. Areas with extreme soil conditions should also be preserved for long-term availability of bare soil and pioneer vegetation and associated fauna.  相似文献   

14.
There is an enormous body of literature on plant invasions, including many investigations of the types of introduced species that are most likely to invade natural ecosystems. In this study we turn invasion biology upside down, and ask what sort of native species colonise novel anthropogenic habitats such as roadside lawns, infrequently tended road shoulders, railway embankments and fire trails. We quantified species richness and cover in roadside lawns and infrequently tended road shoulders in five regions of New South Wales, Australia. The native vegetation in these regions included sclerophyll forest, fertile and infertile Eucalypt‐dominated woodlands, rainforest, and semi‐arid woodland. We performed a complementary survey of sites spanning five disturbance levels within the region containing sclerophyll forest vegetation. Although many non‐native species were present in disturbed, novel habitats, a total of 136 native species were also found. Most of these native species were in sites with low levels of disturbance (fire trails and railway embankments), but 35 native species were found to colonise roadside lawns, our most highly‐disturbed vegetation type. There was a significant negative relationship between the disturbance level in novel habitats and the number and cover of native species. Native species that colonised novel habitats were disproportionately likely be generalist species whose natural habitat includes both high and low light and high and low disturbance conditions. The native species colonising novel habitats also tended to have traits associated with a fast life‐history, including short stature and small seeds. A surprisingly high number of native plant species are colonising novel, anthropogenic habitats. Our findings highlight the potential importance of urban ecosystems for conservation and restoration biology.  相似文献   

15.

Understanding how microclimate and vegetation are associated during secondary succession is of primary importance for plant conservation in the face of the increasing land cover modification. However, these patterns are still unstudied for many plant communities. This study aimed to evaluate the structure (species richness, Shannon's diversity index, Simpson´s dominance index, abundance of each species, average height of species, species cover (%), species composition, and indicator values) of a low thorn forest fragment and to analyze its relation with microclimate along a successional gradient. Four stages of succession were delimited by the analysis of Landsat images, in the state of Tamaulipas, northeast Mexico. Statistical models incorporated species richness, diversity indices, abundance, height, and cover, as variables for searching differences between stages, or to evaluate microclimate associations. A total of 70 species, 54 genera, and 27 families were determined. Height of tree layer was the most important variable for discrimination of the successional stages. Conserved areas differed floristically from other stages, associated mainly with the lowest values of wind speed originated by tree layer characteristics. A significant association between species and microclimate was found, being wind speed and relative humidity the most important variables. Some species, due to their high importance values and their patterns of association with microclimate, may be considered as key taxa for low thorn forest, which is a threatened semitropical community in northeast Mexico. Conserved and late successional areas account for climatic regulation of this plant community, and the importance of these forest patches may be considered when establishing biodiversity protection areas.

  相似文献   

16.
Exotic woody plants are often used by native organisms, but may also be targets of expensive control justified by nature conservation. We determine the use of a weed of national significance, Gorse (Ulex europaeus L.), by native mammals, birds, reptiles and vascular plants in pastoral areas in an Australian biodiversity hotspot. Large numbers of fauna species were observed using Gorse within our 43 × 1 ha sample sites in riparian, woodland and pasture vegetation. Gorse cover and/or height positively influenced: the detection of mammals as a whole in an interaction with visibility at 50–75 cm above ground, but not their species richness or individual species abundances; bird abundance, but not richness; and, reptile richness but not abundance. In terms of flora, Gorse cover and/or height positively affected: non‐native plant species richness and the height and fecundity, but not the richness, of native grasses and forbs—but Gorse cover negatively influenced the height of native herbs. The only species of conservation significance using Gorse were three mammals, only one of which, the Tasmanian Pademelon (Thylogale billardieri), was sufficiently common to analyse. Its abundance had no relationship with Gorse cover or height. Even in the wider context of complementary work, there is no strong threatened species conservation justification for retaining Gorse thickets in the Northern Midlands pastoral landscape. Equally, expending scarce conservation resources to remove Gorse, as is taking place, is unlikely to achieve any threatened species conservation outcome but may help reduce long‐term loss of native animal and plant species.  相似文献   

17.
Cuprophytes are plants that mostly occur on Cu‐rich soil. In South Central Africa, these species are threatened by intensive mining exploitation destroying their habitats. Crepidorhopalon tenuis (Scrophulariaceae) is a tiny annual cuprophyte endemic to the Zambesian center of endemism and is particularly abundant in the Lubumbashi area. We investigate here the ecological niche of C. tenuis through the analyses of its abundance and distribution in relation to soil factors, plant community composition, and anthropogenic perturbations. Soil and vegetation data were collected in seven sites (five metalliferous and two nonmetalliferous). The current study shows that C. tenuis has its ecological optimum on copper‐rich soil and can be referred to as an elective pseudometallophyte. This species is rare in primary steppic savanna on natural metalliferous soil. Its frequency and abundance peak in pioneer communities on bare soil. In particular, the species showed a surprising ecological plasticity as it was able to benefit from anthropogenic disturbance and to colonize the large areas of bare, contaminated soil left over by mining activities. Our results strongly suggest that C. tenuis was a very rare species in natural metalliferous communities, restricted to patchy areas of open soil in steppic savanna. Recent anthropogenic habitats may have conservation value for some rare metallophytes with colonizing traits and low competitive ability.  相似文献   

18.
Abstract. Four herbaceous plant species of a sand dune area and several herb species of an open early‐successional patch were investigated for the occurrence of a simple relationship between aboveground biomass and plant cover. Without exception linear regressions of aboveground biomass on plant cover were found with slope factors depending on the growth form of the species. These results suggest that (early) growth of herbaceous plants in low and (temporarily) open vegetation is not affected by possible constraints caused by a decreasing ratio of plant cover to aboveground biomass. The obtained linear relationships could be used for rapid non‐destructive determination of aboveground biomass by image‐analysis of cover data.  相似文献   

19.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

20.
Most revegetation conducted for biodiversity conservation aims to mimic reference ecosystems present predisturbance. However, revegetation can overshoot or undershoot targets, particularly in the early stages of a recovery process, resulting in conditions different from the reference model. Revegetation that has, as yet, failed to fully meet revegetation targets may, nonetheless, provide habitat for threatened species not present in reference ecosystems. To investigate this possibility, we surveyed Quokka (Setonix brachyurus), a threatened macropod, in a mining landscape in south‐western Australia. We established four sites in each of riparian forest, which is the preferred habitat of quokkas but is not mined, mid‐slope forest, which is the premining reference ecosystem but is not suitable habitat for quokkas, and revegetated forest on mine pits 16–21 years postmining. We recorded quokkas in all riparian forest sites and two revegetated forest sites but not in any mid‐slope forest sites. Occupied revegetated sites had greater cover between 0 and 2 m and were spatially closer to riparian forest than unoccupied revegetated sites, suggesting predation pressure was likely influencing which mine pits were occupied. Our study demonstrated postmining revegetation can provide new habitat for a threatened species and suggested that revegetating a small proportion of sites to provide new habitat for threatened species could be considered as a management option in some scenarios. This could improve landscape connectivity and increase both the area of available habitat and between‐site heterogeneity, which could all potentially increase the ability of revegetation to conserve biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号