首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Renal cell carcinoma (RCC) is a common urologic malignancy, and up to 30% of RCC patients present with locally advanced or metastatic disease at the time of initial diagnosis. Increasing evidence suggests that circular RNAs (circRNAs) serve as genomic regulatory molecules in various human cancers. Our initial in silico microarray‐based analysis identified that circRNA circ_001842 was highly expressed in RCC. Such up‐regulation of circ_001842 in RCC was experimentally validated in tissues and cell lines using RT‐qPCR. Thereafter, we attempted to identify the role of circ_001842 in the pathogenesis of RCC. Through a series of gain‐ and loss‐of function assays, cell biological functions were examined using colony formation assay, Transwell assay, annexin V‐FITC/PI‐labelled flow cytometry and scratch test. A high expression of circ_001842 in tissues was observed as associated with poor prognosis of RCC patients. circ_001842 was found to elevate SLC39A14 expression by binding to miR‐502‐5p, consequently resulting in augmented RCC cell proliferation, migration and invasion, as well as EMT in vitro and tumour growth in vivo. These observations imply the involvement of circ_001842 in RCC pathogenesis through a miR‐502‐5p‐dependent SLC39A14 mechanism, suggesting circ_001842 is a potential target for RCC treatment.  相似文献   

2.
3.
Recently, aberrant expression of miR‐876‐5p has been reported to participate in the progression of several human cancers. However, the expression and function of miR‐876‐5p in osteosarcoma (OS) are still unknown. Here, we found that the expression of miR‐876‐5p was significantly down‐regulated in OS tissues compared to para‐cancerous tissues. Clinical association analysis indicated that underexpression of miR‐876‐5p was positively correlated with advanced clinical stage and poor differentiation. More importantly, OS patients with low miR‐876‐5p level had a significant shorter overall survival compared to miR‐876‐5p high‐expressing patients. In addition, gain‐ and loss‐of‐function experiments demonstrated that miR‐876‐5p restoration suppressed whereas miR‐876‐5p knockdown promoted cell proliferation, migration and invasion in both U2OS and MG63 cells. In vivo studies revealed that miR‐876‐5p overexpression inhibited tumour growth of OS in mice. Mechanistically, miR‐876‐5p reduced c‐Met abundance in OS cells and inversely correlated c‐Met expression in OS tissues. Herein, c‐Met was recognized as a direct target of miR‐876‐5p using luciferase reporter assay. Notably, c‐Met restoration rescued miR‐876‐5p attenuated the proliferation, migration and invasion of OS cells. In conclusion, these findings indicate that miR‐876‐5p may be used as a potential therapeutic target and promising biomarker for the diagnosis and prognosis of OS.  相似文献   

4.
Hepatocyte growth factor (HGF) overexpression is an important mechanism in acquired epidermal growth factor receptor (EGFR) kinase inhibitor gefitinib resistance in lung cancers with EGFR activating mutations. MiR‐1‐3p and miR‐206 act as suppressors in lung cancer proliferation and metastasis. However, whether miR‐1‐3p and miR‐206 can overcome HGF‐induced gefitinib resistance in EGFR mutant lung cancer is not clear. In this study, we showed that miR‐1‐3p and miR‐206 restored the sensitivities of lung cancer cells PC‐9 and HCC‐827 to gefitinib in present of HGF. For the mechanisms, we demonstrated that both miR‐1‐3p and miR‐206 directly target HGF receptor c‐Met in lung cancer. Knockdown of c‐Met mimicked the effects of miR‐1‐3p and miR‐206 transfections Meanwhile, c‐Met overexpression attenuated the effects of miR‐1‐3p and miR‐206 in HGF‐induced gefitinib resistance of lung cancers. Furthermore, we showed that miR‐1‐3p and miR‐206 inhibited c‐Met downstream Akt and Erk pathway and blocked HGF‐induced epithelial‐mesenchymal transition (EMT). Finally, we demonstrated that miR‐1‐3p and miR‐206 can increase gefitinib sensitivity in xenograft mouse models in vivo. Our study for the first time indicated the new function of miR‐1‐3p and miR‐206 in overcoming HGF‐induced gefitinib resistance in EGFR mutant lung cancer cell.  相似文献   

5.
Here, we show that miR‐515‐5p inhibits cancer cell migration and metastasis. RNA‐seq analyses of both oestrogen receptor receptor‐positive and receptor‐negative breast cancer cells overexpressing miR‐515‐5p reveal down‐regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR‐515‐5p inhibits MARK4 directly 3′ UTR interaction and that MARK4 knock‐down mimics the effect of miR‐515‐5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR‐515‐5p, suggesting miR‐515‐5p mediates this process through MARK4 down‐regulation. Furthermore, miR‐515‐5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR‐515‐5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR‐515‐5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR‐515‐5p/MARK4 regulation in cell migration and metastasis across two common cancers.  相似文献   

6.
Long non‐coding RNAs (lncRNAs) could regulate growth and metastasis of hepatocellular carcinoma (HCC). In this study, we aimed to investigate the mechanism of lncRNA F11‐AS1 in hepatitis B virus (HBV)–related HCC. The relation of lncRNA F11‐AS1 expression in HBV‐related HCC tissues to prognosis was analysed in silico. Stably HBV‐expressing HepG2.2.15 cells were established to explore the regulation of lncRNA F11‐AS1 by HBx protein, as well as to study the effects of overexpressed lncRNA F11‐AS1 on proliferation, migration, invasion and apoptosis in vitro. Subsequently, the underlying interactions and roles of lncRNA F11‐AS1/miR‐211‐5p/NR1I3 axis in HBV‐related HCC were investigated. Additionally, the influence of lncRNA F11‐AS1 and miR‐211‐5p on tumour growth and metastasis capacity of HepG2.2.15 cells were studied on tumour‐bearing nude mice. Poor expression of lncRNA F11‐AS1 was correlated with poor prognosis in patients with HBV‐related HCC, and its down‐regulation was caused by the HBx protein. lncRNA F11‐AS1 was proved to up‐regulate the NR1I3 expression by binding to miR‐211‐5p. Overexpression of lncRNA F11‐AS1 reduced the proliferation, migration and invasion, yet induced apoptosis of HepG2.2.15 cells in vitro, which could be abolished by overexpression of miR‐211‐5p. Additionally, either lncRNA F11‐AS1 overexpression or miR‐211‐5p inhibition attenuated the tumour growth and metastasis capacity of HepG2.2.15 cells in vivo. Collectively, lncRNA F11‐AS1 acted as a modulator of miR‐211‐5p to positively regulate the expression of NR1I3, and the lncRNA F11‐AS1/miR‐211‐5p/NR1I3 axis participated in HBV‐related HCC progression via interference with the cellular physiology of HCC.  相似文献   

7.
miR‐516a‐3p has been reported to play a suppressive role in several types of human tumours. However, the expression level, biological function and fundamental mechanisms of miR‐516a‐3p in breast cancer remain unclear. In the present study, we found that miR‐516a‐3p expression was down‐regulated and Pygopus2 (Pygo2) expression was up‐regulated in human breast cancer tissues and cells. Through analysing the clinicopathological characteristics, we demonstrated that low miR‐516a‐3p expression or positive Pygo2 expression was a predictor of poor prognosis for patients with breast cancer. The results of a dual luciferase reporter assay and Western blot analysis indicated that Pygo2 was a target gene of miR‐516a‐3p. Moreover, overexpression of miR‐516a‐3p inhibited cell growth, migration and invasion as well as epithelial‐mesenchymal transition (EMT) of breast cancer cells, whereas reduced miR‐516a‐3p expression promoted breast cancer cell growth, migration, invasion and EMT. Furthermore, we showed that miR‐516a‐3p suppressed cell proliferation, metastasis and EMT of breast cancer cells by inhibiting Pygo2 expression. We confirmed that miR‐516a‐3p exerted an anti‐tumour effect by inhibiting the activation of the Wnt/β‐catenin pathway. Finally, xenograft tumour models were used to show that miR‐516a‐3p inhibited breast cancer cell growth and EMT via suppressing the Pygo2/Wnt signalling pathway. Taken together, these results show that miR‐516a‐3p inhibits breast cancer cell growth, metastasis and EMT by blocking the Pygo2/ Wnt/β‐catenin pathway.  相似文献   

8.
Based on miR‐874 expression levels in the GSE47841 microarray, we hypothesized that the mature products of miR‐874, miR‐874‐3p, or miR‐874‐5p, would inhibit epithelial ovarian cancer (EOC) cell proliferation, metastasis, and chemoresistance. We first examined miR‐874‐3p and miR‐874‐5p expression levels in primary EOC tumor tissue samples and found that they were significantly decreased. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) cell proliferation and transwell assays revealed that miR‐874‐3p and miR‐874‐5p significantly inhibit EOC cell proliferation, migration, and invasion. Then, using MTT and soft agar assays of paclitaxel‐treated Caov3 and SKOV3 cells transfected with miR‐874‐3p and miR‐874‐5p, we found that miR‐874‐3p and miR‐874‐5p enhance EOC cell chemosensitivity. We then confirmed that serine/threonine‐protein kinase 2 (SIK2) was a target gene of miR‐874‐3p and miR‐874‐5p. Overall, the results of this study indicate that SIK2 expression can serve as a prognostic biomarker for EOC and that miR‐874‐3p and miR‐874‐5p have the potential to enhance clinical treatment of EOC.  相似文献   

9.
Glioma is the most common brain tumor malignancy with high mortality and poor prognosis. Emerging evidence suggests that cancer stem cells are the key culprit in the development of cancer. MicroRNAs have been reported to be dysregulated in many cancers, while the mechanism underlying miR‐150‐5p in glioma progression and proportion of stem cells is unclear. The expression levels of miR‐150‐5p and catenin beta 1 (CTNNB1, which encodes β‐catenin) were measured by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot. The expression levels of downstream genes of the Wnt/β‐catenin pathway and stem cell markers were detected by qRT‐PCR. Tumorigenesis was investigated by cell viability, colony formation, and tumor growth in vitro and in vivo. The interaction between miR‐150‐5p and β‐catenin was explored via bioinformatics analysis and luciferase activity assay. We found that miR‐150‐5p was downregulated in glioma and its overexpression inhibited cell proliferation, colony formation, and tumor growth. Moreover, miR‐150‐5p directly suppressed CTNNB1 and negatively regulated the abundances of downstream genes of the Wnt/β‐catenin pathway and stem cell markers. Furthermore, miR‐150‐5p expression was decreased and β‐catenin level was enhanced in CD133+ glioma stem cells. Knockdown of miR‐150‐5p contributed to CD133? cells with stem cell‐like phenotype, whereas overexpression of miR‐150‐5p suppressed CD133+ glioma stem cell‐like characteristics. In conclusion, miR‐150‐5p inhibited the progression of glioma by controlling stem cell‐like characteristics via regulating the Wnt/β‐catenin pathway, providing a novel target for glioma treatment.  相似文献   

10.
The aberrant expression of human sirtuin 2 (SIRT2) has been detected in various types of cancer; however, the biological roles, underlying mechanisms and clinical significance of SIRT2 dysregulation in human colorectal cancer (CRC) remain unclear. The results of this study demonstrate that compared with paired normal tissues, SIRT2 expression is significantly decreased in CRC tissues. SIRT2 loss has been correlated with clinicopathological characteristics, including distant metastasis, lymph node metastasis and American Joint Committee on Cancer (AJCC) stage; this loss serves as an independent factor that indicates a poor prognosis for patients with CRC. Further gain‐ and loss‐of‐function analyses have demonstrated that SIRT2 suppresses CRC cell proliferation and metastasis both in vivo and in vitro. Mechanistically, miR‐212‐5p was identified to directly target the SIRT2 3′‐untranslated region (3′‐UTR), leading to SIRT2 down‐regulation. The ectopic expression of SIRT2 reverses the effect of miR‐212‐5p overexpression on CRC cell colony formation, invasion, migration and proliferation. Clinically, an inverse correlation was found between miR‐212‐5p and SIRT2 expression. High miR‐212‐5p expression has been found to result in a poor prognosis and aggressive clinicopathological characteristics in patients with CRC. Taken together, these results suggest that SIRT2, targeted by miR‐212‐5p, acts as a tumour suppressor in CRC and that the miR‐212‐5p/SIRT2 axis is a promising prognostic factor and potential therapeutic target in CRC.  相似文献   

11.
The long intergenic non‐protein coding RNA regulator of reprogramming (lncRNA‐ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up‐regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour‐node‐metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR‐206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR‐206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR‐206 and might be a potential therapeutic target for patients with OS.  相似文献   

12.
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13.  相似文献   

13.
Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system. Due to the lack of early symptoms, diagnosis of RCC usually occurs at late stages or after cancer metastasis leading to poor prognosis. Therefore, it is crucial to study early molecular mechanisms and biomarkers. Previous studies have suggested that microRNAs are involved in RCC initiation and development, making them a good candidate for early diagnosis and therapy. MiR146b-5P plays important roles in the progression of multiple cancers including thyroid cancer, pancreatic cancer, cervical cancer. However, it is not clear whether and how miR146b-5P is involved in RCC. In this study, we aimed to investigate the function of miR146b-5P in RCC. We examined the expression levels of miR146b-5p in renal cancer tissue and cell lines. We also explored the effects of blocking miR146b-5p in renal tumor growth and inflammatory signaling. Finally, we determined if miR146b-5p regulates tumorigenesis through TRAF6. We found that miR146b-5p levels were significantly increased in renal cancer tissue and renal cancer cells. Blocking miR146b-5p suppressed renal tumor growth and enhanced inflammatory response through increased TRAF6 expression. These effects were eliminated in TRAF6 knockout mice. Our results suggest that enhanced miR146b-5p expression may be a biomarker for RCC and modulating miR146b-5p and TRAF6 levels represent a potential therapeutic strategy for RCC.  相似文献   

14.
Long non‐coding RNA (lncRNA) deleted in lymphocytic leukaemia 1 (DLEU1) was reported to be involved in the occurrence and development of multiple cancers. However, the exact expression, biological function and underlying mechanism of DLEU1 in hepatocellular carcinoma (HCC) remain unclear. In this study, real‐time quantitative polymerase chain reaction (qRT‐PCR) in HCC tissues and cell lines revealed that DLEU1 expression was up‐regulated, and the increased DLEU1 was closely associated with advanced tumour‐node‐metastasis stage, vascular metastasis and poor overall survival. Function experiments showed that knockdown of DLEU1 significantly inhibited HCC cell proliferation, colony formation, migration and invasion, and suppressed epithelial to mesenchymal transition (EMT) process via increasing the expression of E‐cadherin and decreasing the expression of N‐cadherin and Vimentin. Luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay demonstrated that DLEU1 could sponge miR‐133a. Moreover, miR‐133a inhibition significantly reversed the suppression effects of DLEU1 knockdown on HCC cells. Besides, we found that silenced DLEU1 significantly decreased insulin‐like growth factor 1 receptor (IGF‐1R) expression (a target of miR‐133a) and its downstream signal PI3K/AKT pathway in HCC cells, while miR‐133a inhibitor partially reversed this trend. Furthermore, DLEU1 knockdown impaired tumour growth in vivo by regulating miR‐133a/IGF‐1R axis. Collectively, these findings indicate that DLEU1 promoted HCC progression by sponging miR‐133a to regulate IGF‐1R expression. Deleted in lymphocytic leukaemia 1/miR‐133a/IGF‐1R axis may be a novel target for treatment of HCC.  相似文献   

15.
The aberrant expression and dysfunction of long non‐coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B‐cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour‐promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI‐LY7 cells. Mechanistically, SNHG16 directly interacted with miR‐497‐5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR‐497‐5p in DLBCL cells. Moreover, the proto‐oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR‐497‐5p. SNHG16 overexpression rescued miR‐497‐5p‐induced down‐regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown‐induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI‐LY7 cells. Our study suggests that the SNHG16/miR‐497‐5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.  相似文献   

16.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

17.
In recent years, plenty of studies found that circular RNAs (circRNAs) were essential players in the initiation and progression of various cancers including the renal cell carcinoma (RCC). However, the knowledge about the circRNAs in carcinogenesis is still limited. Dysregulated expression of circNUP98 in RCC tissues was identified by the circular RNA microarray. RT‐PCR was performed to measure the expression of circNUP98 in 78 pairs of RCC tissues and adjacent normal tissues. Survival analysis was conducted to explore the association between the expression of circNUP98 and the prognosis of RCC. The function and underlying mechanisms of circSMC3 in RCC cells were investigated by RNAi, CCK‐8, Western blotting, bioinformatic analysis, ChIP assay, circRIP assay and dual luciferase reporter assay. CircNUP98 was up‐regulated in both RCC tissues and cell lines, and high expression of circNUP98 was correlated with poor prognosis of RCC patients. Silencing of circSMC3 inhibited the proliferation and promoted the apoptosis in a caspase‐dependent manner in RCC cells. Mechanistically, we revealed that silencing of circ NUP98 inhibited RCC progression by down‐regulating of PRDX3 via up‐regulation of miR‐567. Furthermore, STAT3 was identified as an inducer of circ NUP98 in RCC cells. CircNUP98 acts as an oncogene by a novel STAT3/circ NUP98/miR‐567/PRDX3 axis, which may provide a potential biomarker and therapeutic target for the treatment of RCC.  相似文献   

18.
Long noncoding RNAs (lncRNAs) have been proven to exert important functions in the various biological processes of human cancers. It has been reported that lncRNA HNF1 homeobox A antisense RNA 1 (HNF1A‐AS1) was abnormally expressed and played a role in the initiation and development of various human cancers. In this study, we confirmed that the expression level of HNF1A‐AS1 was increased in glioma tissues and cells. Knockdown of HNF1A‐AS1 inhibited cell proliferation and promoted cell apoptosis in glioma. Then, we disclosed the downregulation of miR‐363‐3p in glioma tissues and cell lines. The interaction between HNF1A‐AS1 and miR‐363‐3p was identified in glioma cells. Furthermore, an inverse correlation between HNF1A‐AS1 and miR‐363‐3p was observed in glioma tissues. Afterwards, we recognized that MAP2K4 was a direct target of miR‐363‐3p. The expression of MAP2K4 was negatively correlated with miR‐363‐3p while positively related to HNF1A‐AS1 in glioma tissues. We also found the regulatory effect of HNF1A‐AS1 on the MAP2K4‐dependent JNK signaling pathway. All findings indicated that HNF1A‐AS1 induces the upregulation of MAP2K4 to activate the JNK signaling pathway to promote glioma cell growth by acting as a miR‐363‐3p sponge.  相似文献   

19.
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.  相似文献   

20.
Emerging evidence suggests that microRNAs (miRNAs) serve an important role in tumorigenesis and development. Although the low expression of miR‐125a‐5p in gastric cancer has been reported, the underlying mechanism remains unknown. In the current study, the low expression of miR‐125a‐5p in gastric cancer was verified in paired cancer tissues and adjacent non‐tumour tissues. Furthermore, the GC islands in the miR‐125a‐5p region were hypermethylated in the tumour tissues. And the hypermethylation was negatively correlated with the miR‐125a‐5p expression. Target gene screening showed that the histone methyltransferase Suv39H1 was one of the potential target genes. In vitro studies showed that miR‐125a‐5p could directly suppress the Suv39H1 expression and decrease the H3K9me3 levels. On the other hand, the Suv39H1 could induce demethylation of miR‐125a‐5p, resulting in re‐activation of miR‐125a‐5p. What is more, overexpessing miR‐125a‐5p could also self‐activate the silenced miR‐125a‐5p in gastric cancer cells, which suppressed cell migration, invasion and proliferation in vitro and inhibited cancer progression in vivo. Thus, we uncovered here that the epigenetic silenced miR‐125a‐5p could be self‐activated through targeting Suv39H1 in gastric cancer, suggesting that miR‐125a‐5p might be not only the potential prognostic value as a tumour biomarker but also potential therapeutic targets in gastric cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号