首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物多样性而非其土壤遗留效应影响外来植物入侵 植物多样性可以影响外来植物入侵,然而植物多样性的土壤遗留效应是否能够影响外来植物入侵目前仍不清楚。植物多样性能够改变土壤微生物群落和土壤理化性质,这种遗留效应可能会对该土壤中外来植物的生长产生影响。因此,我们假设植物多样性的土壤遗留效应会影响外来植物的入侵。为了检验该假说,我们开展了一个两阶段的植物-土壤反馈实验。在土壤驯化阶段,我们将12个植物物种(4种禾草植物、3种豆科植物和5种杂类草植物)分别单独种植,或者随机选择8个物种(包含3个功能型)混合种植在土壤中。在反馈阶段,我们将入侵植物三叶鬼针草(Bidens pilosa)分别与本地禾草荩草(Arthraxon hispidus)、本地杂类草翅果菊(Pterocypsela indica)或者同时与荩草和翅果菊种植在被驯化过的土壤中。研 究结果显示,三叶鬼针草相对于其本地竞争植物的生长取决于驯化植物和竞争植物物种的功能型。驯化植物的多样性对三叶鬼针草与其本地竞争植物之间的生长差异没有显著影响。然而,随着本地竞争植物物种多样性的增加,三叶鬼针草相对于其本地竞争植物的生长显著降低。这些结果表明,当前的植物多样性可以通过增加入侵植物和本地植物之间的生长不平衡性来减少外来植物的入侵。但是,植物多样性的土壤遗留效应对外来植物入侵的影响可能很小。  相似文献   

2.
Dominant grasses can suppress subordinate species in grassland restorations. Examining factors that influence performance of a dominant grass when interacting with subordinate forbs may provide insights for maintaining plant community diversity. The objective of our study was to determine how soils of different restoration ages and functionally different forbs influence the performance (using biomass and tillering rate as proxies) of a dominant grass: Andropogon gerardii. Sites included a cultivated field and two restored prairies (4 or 16 years after restoration) at Konza Prairie (NE Kansas). We hypothesized A. gerardii performance would be greater in more degraded soils and when interacting with legumes. Soil structure, nutrient status, and microbial biomass were measured in soil that was used to conduct the plant interaction study. Andropogon gerardii performance was measured during an 18-week greenhouse experiment using the relative yield index calculated from net absolute tillering rate and final biomass measurements in three soil restoration age treatments combined with four interacting forb treatments. Restoration improved soil structure, reduced plant-available nutrients, and increased microbial biomass. Relative yield index values of A. gerardii were greater with non-legumes than legumes. Andropogon gerardii performed best in degraded soils, which may explain the difficulty in restoring tallgrass prairie diversity in long-term cultivated soil. Results from this study suggest practices that promote soil aggregation and fungal biomass, coupled with including a high abundance of legumes in seed mixes could reduce dominance of A. gerardii and likely increase plant diversity in tallgrass prairie restorations.  相似文献   

3.
张静  王平  杨明新  谷强  纪宝明 《生态学报》2021,41(24):9878-9885
由植物引起的根际土壤生物或非生物环境的改变能够反馈影响群落中不同植物的生长,直接改变共存植物的相对竞争关系,推动群落结构的动态变化。作为土壤生物群落的重要组成部分,土壤微生物在植物-土壤反馈关系中起到重要的调控作用,对解释植物群落的演替进程和方向有着重要的意义。在草地植物群落演替的早期阶段和外来物种入侵的过程中,宿主植物对丛枝菌根真菌(AMF)的依赖性较低,受本地病原菌的影响较小,一般不存在负反馈。在演替后期,植物对AMF更具依赖性,而积累的病原菌则产生较强的负反馈效应,从而促进群落物种共存和植物多样性,提高草地生产力和稳定性。研究微生物-植物反馈机制不仅有助于完善草地退化与恢复理论,还对退化草地恢复治理的实践有着指导意义。未来关于根际微生物-植物反馈在草地群落演替中的作用应该加强以下几方面的研究:(1)在实验方法上,开展专性微生物-植物反馈研究;(2)在测定指标上,进一步量化不同微生物在反馈关系中的功能差异;(3)在研究对象上,加强土壤微生物在植物群落水平的反馈研究;(4)在应用上,明晰植物-土壤反馈在退化草地恢复过程中的作用,指导草地管理实践。  相似文献   

4.
紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响   总被引:1,自引:0,他引:1  
外来生物入侵可能对生物群落结构和生态系统功能产生多种影响, 但入侵植物与土壤微生物群落组成和多样性的关系尚不清楚。为了揭示外来植物紫茎泽兰(Eupatorium adenophorum)入侵对土壤化学性质和细菌群落组成及多样性的影响, 本研究利用第二代高通量测序技术, 比较了紫茎泽兰不同入侵程度的生境(本地植物群落、紫茎泽兰与本地植物混生群落、紫茎泽兰单优群落)土壤中细菌群落的差异。土壤化学性质分析表明, 土壤pH值、有机质、全N和全K随着紫茎泽兰的入侵而逐渐降低, 而土壤全P则在入侵程度最高的生境土壤中最高。通过测序共获得7,755个细菌OUT (operational taxonomic unit)。结果表明, 紫茎泽兰入侵对土壤的细菌多样性影响较小, ACE和Chao指数在3种不同生境间的差异不显著。细菌在紫茎泽兰与本地植物混生群落中的Shannon指数最低, 即细菌的多样性在中等入侵程度的生境最低。此外, 紫茎泽兰入侵改变了土壤细菌组成和结构, 酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)的相对丰度, 从本地植物群落、混合群落到紫茎泽兰单优群落, 呈现出先增加后减少的趋势。可见, 紫茎泽兰入侵一定程度上改变了土壤微生物的多样性和群落结构, 并改变了土壤的化学性质。  相似文献   

5.
采用时空替代法,选取15a(PF15)、25a(PF25)、30a(PF30)的人工油松林作为样地,并选取灌丛作为参考植被,研究了植被恢复过程中土壤微生物生物量C、N以及土壤养分的变化特征,同时探讨了它们之间的相互关系。研究结果表明随着恢复的进行,土壤质量得到了改善,主要表现为有机碳、全氮、粘粒含量、土壤含水量的上升和pH值、容重的下降。土壤微生物生物量C、N分别在155.00~885.64mg/kg和33.73~237.40mg/kg的范围内变化。土壤微生物生物量C、N在植被恢复的初期显著低于灌丛,而后随着恢复的进行逐步增长。土壤微生物生物量C、N与植被恢复时间的相关性没有达到统计学上的显著水平,但是土壤微生物生物量C与土壤有机碳、全氮、全磷呈显著正相关,这表明植被恢复过程中土壤微生物生物量与土壤养分状况关系密切,植被恢复通过改善土壤养分状况间接地影响土壤微生物生物量的变化。Cmic/TOC在1.38%~4.75%的范围内变化。Cmic/TOC随着植被恢复不断下降,Cmic/TOC与植被恢复时间和土壤有机碳呈显著负相关,这表明植被恢复过程中,惰性有机质积累导致供应土壤微生物的活性有机质减少,Cmic/TOC同时受土壤有机质的数量和质量影响。  相似文献   

6.
Seedling establishment and performance are often limiting steps in many grassland restorations. The soil microbial community is thought to be a factor that contributes to the poor performance of seedlings. Therefore, we conducted a field test to examine the ability of four treatments to alter the soil microbial community and improve seedling performance during restoration. Treatments were commercially available bacterial inoculum, fungal inoculum, fungicide, and a bacteria/fungicide combination which were all designed and sold to enhance plant performance. We hypothesized that if the soil microbial community was limiting the performance of seedlings, then these products would remediate detrimental effects of the soil microbial community resulting in greater seedling performance. However, during the 2 years after restoration, no effect of the treatments was found. It is plausible that the treatments designed for agriculture or home garden settings were not appropriate for a wildland system.  相似文献   

7.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   

8.
Soil microbial communities are critical in determining the performance and density of species in plant communities. However, their role in regulating the success of restorations is much less clear. This study assessed the ability of soil microbial communities to regulate the growth and performance of two potentially dominant grasses and two common forbs in tallgrass prairie restorations. Specifically, we examined the effects of soil microbial communities along a restoration chronosequence from agricultural fields to remnant prairies using experimentally inoculated soils. The two grass species, Andropogon gerardii and Sorghastrum nutans, grew best with the agricultural inoculates and experienced a decline in performance in later stages of the chronosequence, indicating that the microbial community shifted from being beneficial to grasses in the early stages to inhibiting grasses in the later stages of restoration. Growth of the forb, Silphium terebinthinaceum, varied little with inoculation or position along the restoration chronosequence. Growth of Baptisia leucantha, a legume, appeared limited by nodule formation in agricultural soils, peaked in young restoration soils along with nodule formation, but decreased in older soils as the microbial community became more antagonistic. Overall, negative feedbacks tended to be less important early in restoration, but appeared important in remnant and older restored prairies. Our results provide evidence that it may be advantageous for management practices to take negative soil feedbacks into consideration when trying to recreate the diversity of tallgrass prairies.  相似文献   

9.
Most restoration projects involving invasive plant eradication tend to focus on plant removal with little consideration given to how these invasives change soil microbial communities. However, soil microorganisms can determine invasibility of habitats and, in turn, be altered by invasives once established, potentially inhibiting native plant establishment. We studied soil microbial communities in coastal dunes with varying invasion intensity and different restoration approaches (herbicide, mechanical excavation) at Point Reyes National Seashore. Overall, we found evidence of a strong link between bacterial and fungal soil communities and the presence of invasives and restoration approach. Heavily invaded sites were characterized by a lower abundance of putatively identified nitrifiers, fermentative bacteria, fungal parasites, and fungal dung saprotrophs and a higher abundance of cellulolytic bacteria and a class of arbuscular mycorrhizal fungi (Archaeosporomycetes). Changes in soil microbiota did not fully dissipate following removal of invasives using herbicide, with exception of reductions in cellulolytic bacteria and Archaeosporomycetes abundance. Mechanical restoration effectively removed both invasives and soil legacy effects by inverting or “flipping” rhizome‐contaminated surface soils with soils from below and may have inadvertently induced other adverse effects on soils that impeded reestablishment of native dune plants. Land managers should consider additional measures to counteract lingering legacy effects and/or focus restoration efforts in areas where legacy effects are less pronounced.  相似文献   

10.
After removing invasive plants, whether by herbicides or other means, typical restoration design focuses on rebuilding native plant communities while disregarding soil microbial communities. However, microbial–plant interactions are known to influence the relative success of native versus invasive plants. Therefore, the abundance and composition of soil microorganisms may affect restoration efforts. We assessed the effect of herbicide treatment on phytosymbiotic pink‐pigmented facultative methylotrophic (PPFM) bacteria and the potential consequences of native and invasive species establishment post‐herbicide treatment in the lab and in a coastal sage scrub (CSS)/grassland restoration site. Lab tests showed that 4% glyphosate reduced PPFM abundance. PPFM addition to seeds increased seedling length of a native plant (Artemisia californica) but not an invasive plant (Hirschfeldia incana). At the restoration site, methanol addition (a PPFM substrate) improved native bunchgrass (Nassella pulchra) germination and size by 35% over controls. In a separate multispecies field experiment, PPFM addition stimulated the germination of N. pulchra, but not that of three invasive species. Neither PPFM nor methanol addition strongly affected the growth of any plant species. Overall, these results are consistent with the hypothesis that PPFMs have a greater benefit to native than invasive species. Together, these experiments suggest that methanol or PPFM addition could be useful in improving CSS/grassland restorations. Future work should test PPFM effects on additional species and determine how these results vary under different environmental conditions.  相似文献   

11.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

12.
Losses of grasslands have been largely attributed to widespread land-use changes, such as conversion to row-crop agriculture. The remaining tallgrass prairie faces further losses due to biological invasions by non-native plant species, often with resultant ecosystem degradation. Of critical concern for conservation, restoration of native grasslands has been met with little success following eradication of non-native plants. In addition to the direct and indirect effects of non-native invasive plants on beneficial soil microbes, management practices targeting invasive species may also negatively affect subsequent restoration efforts. To assess mechanisms limiting germination and survival of native species and to improve native species establishment, we established six replicate plots of each of the following four treatments: (1) inoculated with freshly collected prairie soil with native seeds; (2) inoculated with steam-pasteurized soil with native seeds; (3) noninoculated with native seeds; or (4) noninoculated/nonseeded control. Inoculation with whole soil did not improve seed germination; however, addition of whole soil significantly improved native species survival, compared to pasteurized soil or noninoculated treatments. Inoculation with whole soil significantly decreased reestablishment of non-native invasive Bothriochloa bladhii (Caucasian bluestem); at the end of the growing season, plots receiving whole soil consisted of approximately 30% B. bladhii cover, compared to approximately 80% in plots receiving no soil inoculum. Our results suggest invasion and eradication efforts negatively affect arbuscular mycorrhizal hyphal and spore abundances and soil aggregate stability, and inoculation with locally adapted soil microbial communities can improve metrics of restoration success, including plant species richness and diversity, while decreasing reinvasion by non-native species.  相似文献   

13.
The restoration of disturbed ecosystems is challenging and often unsuccessful, particularly when non‐native plants are abundant. Ecosystem restoration may be hindered by the effects of non‐native plants on soil biogeochemical characteristics and microbial communities that persist even after plants are removed. To examine the importance of soil legacy effects, we used experimental restorations of Florida shrubland habitat that had been degraded by the introduction of non‐native grasses coupled with either mechanical disturbance or pasture conversion. We removed non‐native grasses and inoculated soils with native microbial communities at each degraded site, then examined how habitat structure, soil nitrogen, soil microbial abundances, and native seed germination responded over two years compared to undisturbed native sites. Grass removal treatments effectively restored some aspects of native habitat structure, including decreased exotic grass cover, increased bare ground, and reduced litter cover. Soil fungal abundance was also somewhat restored by grass removals, but soil algal abundance was unaffected. In addition, grass removal and microbial inoculation improved seed germination rates in degraded sites, but these remained quite low compared to native sites. High soil nitrogen persisted throughout the experiment regardless of treatment. Many treatment effects were site‐specific, however, with legacies in the more degraded vegetation type tending to be more difficult to overcome. These results support the need for context‐dependent restoration approaches and suggest that the degree of soil legacy effects may be a good indicator of restoration potential.  相似文献   

14.
植物、土壤及土壤管理对土壤微生物群落结构的影响   总被引:24,自引:2,他引:24  
土壤微生物是土壤生态系统的重要组成部分,对土壤微生物群落结构多样性的研究是近年来土壤生态学研究的热点。本文综述了有关植物、土壤类型以及土壤管理措施对土壤微生物群落结构影响的最新研究结果,指出植物的作用因植物群落结构多样性、植物种类、同种植物不同的基因型,甚至同一植物不同根的区域而异;而土壤的作用与土壤质地和有机质含量等因素有关;植物和土壤类型在对土壤微生物群落结构影响上的作用存在互作关系。不同的土壤管理措施对土壤微生物群落结构影响较大,长期连作、大量的外援化学物质的应用降低了土壤微生物的多样性;而施用有机肥、免耕可以增加土壤微生物群落结构多样性,有利于维持土壤生态系统的功能。  相似文献   

15.
Plant invasions pose a serious threat to native ecosystem structure and function. However, little is known about the potential role that rhizosphere soil microbial communities play in facilitating or resisting the spread of invasive species into native plant communities. The objective of this study was to compare the microbial communities of invasive and native plant rhizospheres in serpentine soils. We compared rhizosphere microbial communities, of two invasive species, Centaurea solstitialis (yellow starthistle) and Aegilops triuncialis (barb goatgrass), with those of five native species that may be competitively affected by these invasive species in the field (Lotus wrangelianus, Hemizonia congesta, Holocarpha virgata, Plantago erecta, and Lasthenia californica). Phospholipid fatty acid analysis (PLFA) was used to compare the rhizosphere microbial communities of invasive and native plants. Correspondence analyses (CA) of PLFA data indicated that despite yearly variation, both starthistle and goatgrass appear to change microbial communities in areas they invade, and that invaded and native microbial communities significantly differ. Additionally, rhizosphere microbial communities in newly invaded areas are more similar to the original native soil communities than are microbial communities in areas that have been invaded for several years. Compared to native plant rhizospheres, starthistle and goatgrass rhizospheres have higher levels of PLFA biomarkers for sulfate reducing bacteria, and goatgrass rhizospheres have higher fatty acid diversity and higher levels of biomarkers for sulfur-oxidizing bacteria, and arbuscular mycorrhizal fungi. Changes in soil microbial community composition induced by plant invasion may affect native plant fitness and/or ecosystem function.  相似文献   

16.
研究了三江源地区不同建植期人工草地群落生物量、物种组成、多样性指数和土壤理化特征,并用多元逐步回归分析法探讨了土壤理化特征对群落生物量、多样性变化的响应.结果表明:研究区不同建植期人工草地植物群落的种类组成、植物功能群组成和群落数量特征存在显著差异;土壤含水量随着物种多样性指数的增加而增加,土壤容重随着物种多样性的增加而减小;土壤微生物生物量碳与土壤含水量、土壤有机质呈极显著正相关,与土壤容重呈极显著负相关;土壤有机碳含量明显呈"V"字型变化,且与土壤含水量的变化趋势相一致,随土壤容重的增加而减少;群落生物量与土壤养分和土壤含水量之间呈显著正相关,群落地上、地下生物量的增加有利于提高土壤养分含量.  相似文献   

17.
A primary reason for restoring plant communities is to increase biodiversity to previous levels. It is expected that restoring land with greater plant diversity will increase biodiversity at higher trophic levels, but high diversity seed mixes are expensive. In this study, we used one insect family, leafhoppers (Hemiptera: Cicadellidae) to assess the difference in leafhopper communities that result from establishing high compared with low plant richness restorations. We tested the hypotheses that: (1) the added effort of a high richness restoration leads to measurable increases in both diversity and richness of leafhoppers; and (2) that leafhopper community composition is more similar to remnant prairies in high richness than in low plant richness restorations. We found that higher plant richness led to 3‐ to 7‐fold increases in leafhopper and prairie‐dependent leafhopper diversity and richness in restorations. Leafhopper communities in high richness restorations were not more similar to remnant prairies, rather they were distinct among high and low richness restorations and prairie interior. Leafhopper richness and diversity correlated with plant richness, and leafhopper community composition differed among plant community assemblages, but not with the occurrence of single plant species. For our sites, species‐rich restorations provided better quality habitat for leafhoppers that was comparable to remnant prairie. Our results suggest that restorations with high plant species richness better support animal food webs.  相似文献   

18.
土壤微生物是生态系统维持正常结构与功能的重要组成部分,为探究盐城滩涂典型湿地土壤微生物群落结构特征,以江苏盐城滩涂互花米草、藨草、盐地碱蓬、芦苇及淤泥质光滩5种典型群落为对象,采用16S rRNA高通量测序技术分析0—10 cm(表层)、10—30 cm(中层)、30—60 cm(深层)土壤微生物多样性及群落结构。结果表明:(1)几种植物群落间,土壤微生物群落结构差异较大,主要体现在细菌群落结构的差异性,古菌群落结构差异相对较小。光滩与植物群落间,在土壤细菌种类及相对丰度上差异相对较大,互花米草群落与本土植物群落间,在微生物群落的细菌种类组成上存在较大差异;藨草群落土壤表层微生物群落结构与互花米草群落相似,深层与盐地碱蓬、芦苇群落相似。(2)同一群落不同层次土壤微生物群落结构相似,差异小于不同群落间土壤微生物群落的结构差异性;不同群落对应层次间,表深层土壤中五种群落土壤微生物多样性存在显著差异,中层土壤中五种群落微生物多样性差异不显著。总体上,植物群落类型对土壤微生物群落结构的影响大于土壤深度;与本土植物群落相比,互花米草群落土壤主要优势门微生物种类差异较小,但部分优势门微生物相对丰度...  相似文献   

19.
Stable provisioning of ecosystem functions and services is crucial for human well‐being in a changing world. Two essential ecological components driving vital ecosystem functions in terrestrial ecosystems are plant diversity and soil microorganisms. In this study, we tracked soil microbial basal respiration and biomass over a time period of 12 years in a grassland biodiversity experiment (the Jena Experiment) and examined the role of plant diversity and plant functional group composition for the spatial and temporal stability of soil microbial properties (basal respiration and biomass) in bulk‐soil. Spatial and temporal stability were calculated as the inverse coefficient of variation (CV?1) of soil microbial respiration and biomass measured from soil samples taken over space and time, respectively. We found that 1) plant species richness consistently increased soil microbial properties after a time lag of four years since the establishment of the experimental plots, 2) plant species richness had minor effects on the spatial stability of soil microbial properties, whereas 3) the functional composition of plant communities significantly affected spatial stability of soil microbial properties, with legumes and tall herbs reducing both the spatial stability of microbial respiration and biomass, while grasses increased the latter, and 4) the effect of plant diversity on temporal stability of soil microbial properties turned from being negative to neutral, suggesting that the recovery of soil microbial communities from former arable land‐use takes more than a decade. Our results highlight the importance of plant functional group composition for the spatial and temporal stability of soil microbial properties, and hence for microbially‐driven ecosystem processes, such as decomposition and element cycling, in temperate semi‐natural grassland.  相似文献   

20.
除草剂在桉树人工林中的应用越来越普遍,但关于除草剂对桉树人工林林下植物和土壤微生物群落的影响知之甚少。通过桉树人工林低剂量高频率(LHF)、中剂量中频率(MMF)、高剂量低频率(HLF)除草剂喷施试验,并与人工除草(MT)为对照,比较分析不同剂量、不同频率除草剂施用对林下植物和土壤微生物群落的影响。结果表明,施用除草剂导致桉树人工林林下植物种类和功能群组成发生显著变化,但并未显著降低林下植物群落物种丰富度和多样性,随除草剂施用频率的降低及恢复时间的增加,物种丰富度及多样性指数呈恢复趋势。除草剂施用也导致土壤养分含量降低。除草剂通过对林下植物群落和土壤养分的负面影响间接影响土壤微生物群落。LHF显著降低藤本植物而显著提高蕨类植物功能群的重要值,从而显著降低了微生物群落、真菌和放线菌的磷脂脂肪酸(PLFA)含量。MMF显著降低木本和藤本植物而显著提高禾草植物功能群的重要值,导致土壤微生物群落和放线菌的PLFA含量显著降低。HLF未显著影响林下植物及土壤微生物群落,但土壤全磷含量显著降低,速效磷含量也大幅下降。施用除草剂显著降低了土壤微生物生物量碳、氮的含量。因此,生产上应减少除草剂的施用,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号