首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Otolith geochemistry does not reflect dispersal history of clownfish larvae   总被引:1,自引:0,他引:1  
Natural geochemical signatures in calcified structures are commonly employed to retrospectively estimate dispersal pathways of larval fish and invertebrates. However, the accuracy of the approach is generally untested due to the absence of individuals with known dispersal histories. We used genetic parentage analysis (genotyping) to divide 110 new recruits of the orange clownfish, Amphiprion percula, from Kimbe Island, Papua New Guinea, into two groups: “self-recruiters” spawned by parents on Kimbe Island and “immigrants” that had dispersed from distant reefs (>10 km away). Analysis of daily increments in sagittal otoliths found no significant difference in PLDs or otolith growth rates between self-recruiting and immigrant larvae. We also quantified otolith Sr/Ca and Ba/Ca ratios during the larval phase using laser ablation inductively coupled plasma mass spectrometry. Again, we found no significant differences in larval profiles of either element between self-recruits and immigrants. Our results highlight the need for caution when interpreting otolith dispersal histories based on natural geochemical tags in the absence of water chemistry data or known-origin larvae with which to test the discriminatory ability of natural tags.  相似文献   

2.
Mortality that occurs during larval dispersal as a consequence of environmental, maternal, and genetic effects and their interactions can affect annual recruitment in fish populations. We studied larval lake sturgeon (Acipenser fulvescens) drift for two consecutive nights to examine whether larvae from different females exposed to the same environmental conditions during dispersal differed in relative levels of mortality. We estimated proportional contributions of females to larval collections and relative larval loss among females as larvae dispersed downstream between two sampling sites based on genetically determined parentage. Larval collections were composed of unequal proportions of offspring from different females that spawned at upstream and downstream locations (~0.8 km apart). Hourly dispersal patterns of larvae produced from females spawning at both locations were similar, with the largest number of larvae observed during 22:00–23:00 h. Estimated relative larval loss did not differ significantly among females as larvae were sampled at two sites approximately 0.15 and 1.5 km from the last section downstream of spawning locations. High inter- and intra-female variation in larval contributions and relative larval loss between nights may be a common feature of lake sturgeon and other migratory fish species, and likely is a source of inter-annual and intra-annual variation in fish recruitment.  相似文献   

3.
The objective of this pilot study was to determine if otolith signatures of juvenile summer flounder Paralichthys dentatus (Linnaeus) were differentiable between beach and marsh habitat types within two North Carolina (NC), U.S.A., estuarine systems. Elemental signatures were differentiable between habitats in both systems, and in one system at smaller spatial scales (<5 km) than have been reported for any estuarine species using otolith microchemistry. These results indicate the potential for using summer flounder otolith elemental analysis to assess the nursery role of habitats within NC estuaries.  相似文献   

4.
Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no‐take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short‐distance larval dispersal within regions (200 m to 50 km) and long‐distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best‐fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long‐distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.  相似文献   

5.
Dispersal is an important early life history process that influences fish population dynamics and recruitment. We studied larval sea lamprey (Petromyzon marinus) dispersal by combining spatially explicit field sampling, genetic methods, and laboratory experiments to investigate how far sea lamprey larvae can disperse away from nests during their first growing season; subsequent dispersal by age 1 of sea lamprey; and the effect of density on larval dispersal. In two study streams sea lamprey larvae were observed to have moved >150 m downstream from the most likely source nest within 2–3 weeks of hatching. Conversely, randomization trials suggested that for both streams age 0 larvae were found closer to full siblings than would be expected if dispersal was not constrained by distance. Restricted dispersal was also observed for age 1 larvae in five streams, although for this age class full siblings were more commonly found to be separated by >1,000 m. Laboratory experiments indicated a significant effect of density on the movement of larval sea lamprey, with more larval movement at higher densities. Temperature also affected movement significantly, with reduced larval movements at cooler temperatures. Our findings suggest that larval sea lamprey dispersal is sufficient to minimize the likelihood of strong density-dependent effects on recruitment, even with large population sizes.  相似文献   

6.
Daily increment validation in fish otolith is fundamental to studies on fish otolith microstructure, age determination and life history traits, and thus is critical for species conservation and fishery management. However, it has never been done for Schizothoracine fish, which is the dominant component of fish fauna in the Tibetan Plateau. This study validated the daily increment formation of Gymnocypris selincuoensis, as a representative of Schizothoracine fish, by monitoring the growth of hatchery‐reared larvae group and wild‐caught post‐yolk‐sac larvae group under controlled experiments. The results from monitoring the hatchery‐reared larvae group showed that sagittae and lapilli were found in yolk‐sac larvae, and formed 5–7 days before hatching, but asterisci were not found until 11 days post‐hatching. The first increment in sagittae and lapilli was formed in the first day after hatching. The daily periodicity of increment formation was examined and confirmed in sagittae and lapilli of both larvae groups. However, sagittae were better for age determination than lapilli for larvae at earlier days. For larval G. selincuoensis older than 50 days, lapilli were the only otolith pair suitable for larvae daily age determination. This study validated the daily increment formation in Schizothoracine fish for the first time has primary implications to other fishes from this subfamily.  相似文献   

7.
Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.  相似文献   

8.
Ecological aspects of recruitment in the amphidromous goby, Sicyopterus japonicus, were studied from larval collections made with a set net in the estuary of the Ota River, Wakayama, Japan. The abundance patterns of the 12,766 larvae collected from 18 April to 26 August 2006 showed several peaks during the recruitment season. Their body sizes at recruitment ranged from 23.5 to 30.0 mm standard length (mean ± SD, 26.3 ± 1.1 mm), 0.11 to 0.49 g body weight (0.22 ± 0.05 g), and 8 to 20 condition factor (11 ± 2). The standard length of the goby larvae tended to decrease with the season, while their body weight slightly increased and resulted in an increase in condition factor. The recruitment of larvae occurred mainly during the daytime. Otolith growth increment analysis of 30 larvae collected by a square lift net on 30 April 2005 revealed that the oceanic larval duration after downstream migration ranged from 173 to 253 days (208 ± 22) after hatching. A limited time of recruitment in early summer and a considerably long duration of oceanic life (about a half year) appeared to be unique characteristics of this Sicyopterus species that lives in a temperate region in comparison to other tropical species of the genus Sicyopterus that all have year-round recruitment.  相似文献   

9.
Coral reef fish larvae are tiny, exceedingly numerous, and hard to track. They are also highly capable, equipped with swimming and sensory abilities that may influence their dispersal trajectories. Despite the importance of larval input to the dynamics of a population, we remain reliant on indirect insights to the processes influencing larval behavior and transport. Here, we used genetic data (300 independent single nucleotide polymorphisms) derived from a light trap sample of a single recruitment event of Dascyllus abudafur in the Red Sea (N = 168 settlers). We analyzed the genetic composition of the larvae and assessed whether kinship among these was significantly different from random as evidence for cohesive dispersal during the larval phase. We used Monte Carlo simulations of similar‐sized recruitment cohorts to compare the expected kinship composition relative to our empirical data. The high number of siblings within the empirical cohort strongly suggests cohesive dispersal among larvae. This work highlights the utility of kinship analysis as a means of inferring dynamics during the pelagic larval phase.  相似文献   

10.
A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50–84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.  相似文献   

11.
Fly larvae can be used effectively to reduce various organic waste types and produce value-added products, including protein as an ingredient in livestock feeds and oil for biodiesel production. However, fly development on different waste types may cause differences in growth rate and the body composition, which can further be influenced by fly species and their stocking rate. This study explored the impact of different waste types (kitchen waste, abattoir waste and swine manure) and larval stocking rate on growth and body composition of four blowfly species, Chrysomya chloropyga (Wiedemann), Chrysomya megacephala (Fabricius), Chrysomya putoria (Wiedemann) and Lucilia sericata (Meigen). First-instar larvae (20, 50 or 100), less than 3 hr old, were placed on 100 g of each waste type. Pre-pupal mass at commencement of post-feeding larval dispersal, time to onset of dispersal, survival and nutrient reserves were determined for each species, stocking rate and waste type. Our results revealed that larvae fed kitchen and abattoir waste had significantly higher dry mass, crude protein and lipid content compared with those fed swine manure. Higher survival rate was observed with increasing larval stocking rate. We provide important information to guide the mass production of high-quality nutrient-rich larvae and recommend C. putoria, which is versatile and effective on a range of waste products, as well as high in protein and lipids. The implications for waste management are discussed.  相似文献   

12.
In many marine invertebrates, long‐distance dispersal is achieved during an extended pelagic larval phase. Although such dispersal should result in high gene flow over broad spatial scales, fine‐scale genetic structure has often been reported, a pattern attributed to interfamilial variance in reproductive success and limited homogenization during dispersal. To examine this hypothesis, the genetic diversity of dispersing larvae must be compared with the postdispersal stages, that is benthic recruits and adults. Such data remain, however, scarce due to the difficulty to sample and analyse larvae of minute size. Here, we carried out such an investigation using the marine gastropod Crepidula fornicata. Field sampling of three to four larval pools was conducted over the reproductive season and repeated over 3 years. The genetic composition of larval pools, obtained with 16 microsatellite loci, was compared with that of recruits and adults sampled from the same site and years. In contrast to samples of juveniles and adults, large genetic temporal variations between larval pools produced at different times of the same reproductive season were observed. In addition, full‐ and half‐sibs were detected in early larvae and postdispersal juveniles, pointing to correlated dispersal paths between several pairs of individuals. Inbred larvae were also identified. Such collective larval dispersal was unexpected given the long larval duration of the study species. Our results suggest that each larval pool is produced by a small effective number of reproducers but that, over a reproductive season, the whole larval pool is produced by large numbers of reproducers across space and time.  相似文献   

13.
Population connectivity, the extent to which geographically separated subpopulations exchange individuals and are demographically linked, is important to the scientific management of marine living resources. In theory, the design of a marine protected area, for example, depends on an explicit understanding of how dispersal of planktonic larvae affects metapopulation structure and dynamics ( Botsford et al. 2001 ). In practice, for most marine metazoans with planktonic larvae, the mean and variance of the distances that larvae disperse are unobservable quantities, owing to the small sizes of larvae and the very large volumes through which they are distributed. Simulation of dispersal kernels with models that incorporate oceanography and limited aspects of larval biology and behaviour, coupled with field studies of larval distribution, abundance, and settlement, have provided the best available approaches to date for understanding connectivity of marine populations ( Cowen et al. 2006 ). On the other hand, marine population connectivity has often been judged by spatial variation in the frequencies of alleles and genotypes, although the inherent limitations of this indirect approach to measuring larval dispersal have often been overlooked ( Hedgecock et al. 2007 ). More recently, researchers have turned to genetic methods and highly polymorphic markers that can provide direct evidence of population connectivity in the form of parentage or relatedness of recruits (e.g. Jones et al. 2005 ). In this issue, Christie et al. (2010) provide a particularly elegant example, in which both indirect and novel direct genetic methods are used to determine the major ecological processes shaping dispersal patterns of larval bicolour damselfish Stegastes partitus, a common and widespread reef fish species in the Caribbean Basin ( Fig. 1 ).
Figure 1 Open in figure viewer PowerPoint The bicolour damselfish Stegastes partitus shows substantial self‐recruitment of juveniles to their natal coral reef habitat. Below, a male guarding an artificial nest made from PVC pipe; differential reproductive success of parents or differential survival of egg clutches or the larvae that hatch from them may account for signals of sweepstakes reproductive success in this species (photo credits: top, Bill Harward; bottom, Darren Johnson).  相似文献   

14.
Understanding the movement of genes and individuals across marine seascapes is a long‐standing challenge in marine ecology and can inform our understanding of local adaptation, the persistence and movement of populations, and the spatial scale of effective management. Patterns of gene flow in the ocean are often inferred based on population genetic analyses coupled with knowledge of species' dispersive life histories. However, genetic structure is the result of time‐integrated processes and may not capture present‐day connectivity between populations. Here, we use a high‐resolution oceanographic circulation model to predict larval dispersal along the complex coastline of western Canada that includes the transition between two well‐studied zoogeographic provinces. We simulate dispersal in a benthic sea star with a 6–10 week pelagic larval phase and test predictions of this model against previously observed genetic structure including a strong phylogeographic break within the zoogeographical transition zone. We also test predictions with new genetic sampling in a site within the phylogeographic break. We find that the coupled genetic and circulation model predicts the high degree of genetic structure observed in this species, despite its long pelagic duration. High genetic structure on this complex coastline can thus be explained through ocean circulation patterns, which tend to retain passive larvae within 20–50 km of their parents, suggesting a necessity for close‐knit design of Marine Protected Area networks.  相似文献   

15.
Specimens of the deep‐sea sipunculan Phascolosoma turnerae were retrieved over a 5‐year period from fibrous collectors placed for various time intervals at a depth of 520 m in the Tongue of the Ocean, Bahamas. Sipunculans removed from the collectors were counted, weighed, and maintained in the laboratory at 14°C, where they were monitored for gametogenic activity, spawning, development, and growth. In a 2‐year study of seasonality, worms were most abundant in collectors retrieved in the spring and summer, and least abundant in the fall. Small animals (<0.01 g) were present in all seasons and represented ≥70% of the animals in winter collections. Large specimens (>0.16 g) were found from May through August, but in markedly lower frequencies than small animals. Over the entire study, spawning was observed in the laboratory from April through August. We inferred from analyses of size frequencies, growth, and spawning seasonality that settlement of the larvae occurs primarily from November through April and that oceanic larval life could be as short as 7 months and as long as 12–14 months. Cleavage of fertilized eggs, as observed from laboratory spawnings, was spiral and holoblastic, resulting in a trochophore that transformed into a typical planktotrophic pelagosphera larva at 21 d. A few larvae survived as long as 2 months in the laboratory. This is the first study of biological processes in living sipunculans from the deep sea, and one of the first studies of living deep‐sea wood dwellers.  相似文献   

16.
Southern smelts (Retropinna spp.) in coastal rivers of Australia are facultatively diadromous, with populations potentially containing individuals with diadromous or wholly freshwater life histories. The presence of diadromous individuals is expected to reduce genetic structuring between river basins due to larval dispersal via the sea. We use otolith chemistry to distinguish between diadromous and nondiadromous life histories and population genetics to examine interbasin connectivity resulting from diadromy. Otolith strontium isotope (87Sr:86Sr) transects identified three main life history patterns: amphidromy, freshwater residency and estuarine/marine residency. Despite the potential for interbasin connectivity via larval mixing in the marine environment, we found unprecedented levels of genetic structure for an amphidromous species. Strong hierarchical structure along putative taxonomic boundaries was detected, along with highly structured populations within groups using microsatellites (FST = 0.046–0.181), and mtDNA (ΦST = 0.498–0.816). The presence of strong genetic subdivision, despite the fact that many individuals reside in saline water during their early life history, appears incongruous. However, analysis of multielemental signatures in the otolith cores of diadromous fish revealed strong discrimination between river basins, suggesting that diadromous fish spend their early lives within chemically distinct estuaries rather than the more homogenous marine environment, thus avoiding dispersal and maintaining genetic structure.  相似文献   

17.
Isotopic composition of 87Sr:86Sr and natural elemental tracers (Sr, Ba, Mg, Mn and Ca) were quantified from otoliths in juvenile and adult Chinook salmon Oncorhynchus tshawytscha to assess the ability of otolith microchemistry and microstructure to reconstruct juvenile O. tshawytscha rearing habitat and growth. Daily increments were measured to assess relative growth between natal rearing habitats. Otolith microchemistry was able to resolve juvenile habitat use between reservoir and natal tributary rearing habitats (within headwater basins), but not among catchments. Results suggest that 90% (n = 18) of sampled non‐hatchery adults returning to the Middle Fork Willamette River were reared in a reservoir and 10% (n = 2) in natal tributary habitat upstream from the reservoir. Juveniles collected in reservoirs had higher growth rates than juveniles reared in natal streams. The results demonstrate the utility of otolith microchemistry and microstructure to distinguish among rearing habitats, including habitats in highly altered systems.  相似文献   

18.
Currently, ocean acidification is occurring at a faster rate than at any time in the last 300 million years, posing an ecological challenge to marine organisms globally. There is a critical need to understand the effects of acidification on the vulnerable larval stages of marine fishes, as there is potential for large ecological and economic impacts on fish populations and the human economies that rely on them. We expand upon the narrow taxonomic scope found in the literature today, which overlooks many life history characteristics of harvested species, by reporting on the larvae of Rachycentron canadum (cobia), a large, highly mobile, pelagic‐spawning, widely distributed species with a life history and fishery value contrasting other species studied to date. We raised larval cobia through the first 3 weeks of ontogeny under conditions of predicted future ocean acidification to determine effects on somatic growth, development, otolith formation, swimming ability, and swimming activity. Cobia exhibited resistance to treatment effects on growth, development, swimming ability, and swimming activity at 800 and 2100 μatm pCO2. However, these scenarios resulted in a significant increase in otolith size (up to 25% larger area) at the lowest pCO2 levels reported to date, as well as the first report of significantly wider daily otolith growth increments. When raised under more extreme scenarios of 3500 and 5400 μatm pCO2, cobia exhibited significantly reduced size‐at‐age (up to 25% smaller) and a 2–3 days developmental delay. The robust nature of cobia may be due to the naturally variable environmental conditions this species currently encounters throughout ontogeny in coastal environments, which may lead to an increased acclimatization ability even during long‐term exposure to stressors.  相似文献   

19.
Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.  相似文献   

20.
Characterizing patterns of larval dispersal is essential to understanding the ecological and evolutionary dynamics of marine metapopulations. Recent research has measured local dispersal within populations, but the development of marine dispersal kernels from empirical data remains a challenge. We propose a framework to move beyond point estimates of dispersal towards the approximation of a simple dispersal kernel, based on the hypothesis that the structure of the seascape is a primary predictor of realized dispersal patterns. Using the coral reef fish Elacatinus lori as a study organism, we use genetic parentage analysis to estimate self‐recruitment at a small spatial scale (<1 km). Next, we determine which simple kernel explains the observed self‐recruitment, given the influx of larvae from reef habitat patches in the seascape at a large spatial scale (up to 35 km). Finally, we complete parentage analyses at six additional sites to test for export from the focal site and compare these observed dispersal data within the metapopulation to the predicted dispersal kernel. We find 4.6% self‐recruitment (CI95%: ±3.0%) in the focal population, which is explained by the exponential kernel y = 0.915x (CI95%: y = 0.865x, y = 0.965x), given the seascape. Additional parentage analyses showed low levels of export to nearby sites, and the best‐fit line through the observed dispersal proportions also revealed a declining function y = 0.77x. This study lends direct support to the hypothesis that the probability of larval dispersal declines rapidly with distance in Atlantic gobies in continuously distributed habitat, just as it does in the Indo‐Pacific damselfishes in patchily distributed habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号