首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herbivores can dramatically diminish revegetation success, but associational refuge theory predicts that neighbouring plants could hinder browsing of planted seedlings. The key to strategic restoration using associational refuge is to define which patch variables are effective against the appropriate herbivores, at multiple scales, and to understand which stages of the foraging process these variables disrupt. Our study aimed to test the capacity of existing vegetation to act as associational refuge for planted seedlings by affecting search, detection and consumption decisions, and more generally influence herbivore foraging patterns. We conducted a field trial with free‐ranging, mammalian herbivores and nursery‐raised, native tree seedlings. We quantified seedling browsing damage over time in relation to a suite of existing patch variables at two spatial scales (100 m2 and 4 m2). After two months, 78% of seedlings were browsed, suffering mean foliage loss of 90.5%. Focal seedlings were almost exclusively consumed by swamp wallabies Wallabia bicolor, an abundant generalist browser. Once a swamp wallaby investigated a seedling, the probability of consumption was high (86%). At the large scale, browsing of seedlings was delayed in patches with lower canopy cover and fewer browsed plant species. Seedlings in fern‐dominated patches escaped browsing for longer than those in grass‐dominated patches. At the small scale, browsing was delayed with higher cover of understorey vegetation. Associational refuge was provided by vegetation with characteristics, and at spatial scales, consistent with disrupted search and detection of focal seedlings by herbivores. Thus strategic placement of seedlings in existing vegetation – based on understanding which herbivore species is responsible and how it responds to vegetation – can take advantage of associational refuge during restoration. However, given rapid seedling detection by herbivores, associational refuge may be inadequate in the long‐term under high browsing pressure unless high absolute numbers of seedlings are planted among refuge.  相似文献   

2.
Edge habitats create environmental gradients that affect plant community composition and herbivore behavior. Silvicultural disturbance creates edge habitat with direct (via changes in light) and indirect (via changes in herbivore behavior) consequences for the growth and survival of tree seedlings, and thus, the composition of the future forest stands. Herbivores, particularly ungulates, can be a major limiting factor in oak regeneration, and silvicultural disturbance may alter the abundance or behavior of herbivores following harvest. We measured the severity of herbivory on experimentally planted white (Quercus alba) and black oak (Quercus velutina) seedlings by white-tailed deer (Odocoileus virginianus) and eastern cottontail rabbits (Sylvilagus floridanus), as well as foliar damage from insects, across gradients created by clearcuts in a deciduous forest in Indiana, USA. Overall browse pressure on oaks was low in our study. Nonetheless, spatial variation in herbivory depended on herbivore taxa; herbivory by rabbits was highest inside harvest openings, whereas foliar damage by insects peaked in the forest. Intensity of deer herbivory was constant across the edge. In addition, we observed indirect interactions among herbivore species mediated by a seedling’s browsing history. Herbivore damage by deer was positively related to past browsing by rabbits, and foliar damage from insects was positively related to past browsing by both deer and rabbits. Increasing woody plant competition reduced herbivory on seedlings by both deer and rabbits. Given the lack of spatial variability in deer herbivory and low overall herbivory by rabbits, we suspect that interactions between timber harvesting and herbivory did not have a strong impact on oak seedlings at our study sites.  相似文献   

3.
The effects of herbivory on plant invasions are broadly discussed, and many studies have led to widely debated theories. In particular, the effects of herbivores on pine invasion found in different studies vary; in some cases, they controlled their expansion, and in others, they promoted it. On the other hand, vulnerability to invasion by pines differs between community types. Sites with dunes and bare ground are the most heavily invaded, followed by grasslands, while shrublands and forests are least invaded. Because current evidence is mostly observational, some of the varying responses of pine invasions to herbivory should be examined further through replicated experiments. Here, we address experimentally the extent to which preference for the non‐native invasive Pinus contorta by domestic sheep (Ovis aries) depends on the vegetation type. We installed experimental enclosures within two adjacent communities, grassland and shrubland, and in each one, we planted seedlings of P. contorta Douglas and established a sheep density typically recommended for the study area. The number of browsed seedlings, the number and type of branches browsed per seedling, the reduction in height and probability of survival immediately after browsing period were recorded. The number of browsed seedlings and damage to the terminal bud were higher in grassland than in shrubland, while the number of browsed branches per seedling was higher in shrubland than grassland. The reductions in height and probability of survival immediately after browsing were similar in both communities. These results show that moderate levels of sheep herbivory could reduce 20% seedling survival in both communities; nevertheless, the damage patterns differ between them. The sheep browsed more substantial number of seedlings in grasslands than in shrublands. However, if sheep find the seedlings, they damage it more in shrublands. These results suggest that experimental studies comparing communities are important for pine invasion management.  相似文献   

4.
The recruitment and mortality of Melaleuca quinquenervia seedlings were evaluated over a 3-year period in a seasonally inundated wetland in the western Everglades region. The mean (±SE) density of seedlings/saplings m?1 declined from 64.8 (±4.5) to 0.5 (±0.2) over the 3 years, a population reduction of 99.2%. Four distinct water regimes characterized this site: dry, dry to wet transition, flooded, and wet to dry transition. Seedling recruitment was highest in the dry to wet transition and lowest in the flooded water regime, while mortality was highest under flooded and dry water regimes. The mean estimate of population growth (λ) across water regimes was 0.64 ± 0.05 indicating negative population growth. Elimination of introduced insect herbivores using insecticides did not reduce mortality of recruited M. quinquenervia seedlings/saplings indicating that direct herbivory was not responsible for the decline in seedling density. On the other hand, a mean of only 0.2 (±0.03) viable seeds m?2 d?1 fell into the plots, an amount considerably lower than in previous studies. We submit that change in the invasion trajectory M. quinquenervia was most likely caused by reduced seed inputs from aerial seed banks depleted by insect herbivory rather than direct herbivory on seedlings. This may indicate a fundamental alteration of M. quinquenervia population dynamics ultimately resulting in a less invasive and, therefore, less ecologically damaging species.  相似文献   

5.
Summarized here are ten investigations concerning the volume of coarse woody debris (CWD) in Central European streams. Altogether, 69 stream sections were examined ranging from Northern German lowland streams to brooks in alpine regions. Most of the study streams are according to Central European standards quasi‐natural and are bordered by deciduous forest. The geometric mean of CWD volume related to stream length is 1.44 m3 /100 meter reach. Related to stream bottom area, the geometric mean of CWD volume is 0.202 m3 /100 m2 . The mean number of logs (≥10 cm diameter) is 12.5 logs/100 meter reach, and 3.01/100 m2 bottom area (geometric means). Regarding only quasi‐natural stream sections (riparian forest currently unmanaged and no removal of CWD for at least 10 years), the geometric mean of CWD standing stock is 0.45 m3 /100 m2 for lowland streams, 0.38 m3/100 m2 for streams in lower mountainous areas and 0.02 m3 /100 m2 for alpine floodplains. From the distribution of size classes and comparison with other studies it is likely, that the current CWD standing stock is considerably less than the potential amount of CWD. For centuries all of the streams have been influenced by man. Historic alterations of the stream, its floodplain and the riparian vegetation may still affect CWD supply and standing stock. We conclude that virtually all streams in Central Europe are highly altered with respect to the amount of CWD, and that the importance of CWD is under‐represented in recent assessment principles for streams in Germany.  相似文献   

6.
This study treats dead trees and their remnants in the managed and virgin forest of Rajhenavski Rog, Slovenia, at a location of Omphalodo-Fagetum omphalodetosum plant community. The study plots were selected in four forest cycle developmental phases (optimal, mixed, regeneration and juvenile phase) of both managed and virgin forest. The quantity (volume and dry matter) and the structure of coarse woody debris (CWD) were compared between the selected plots within the particular type of the forest, and between the virgin and the managed forest. Belowground CWD was quantified by modeling the tree's biomass and decaying processes of the trees. The results show significant differences in CWD between the virgin forest developmental phases. The highest concentration of CWD in the virgin forest was found in the regeneration phase (626.0 m3/ha and 179.3 tdry matter/ha), while the juvenile phase (248.3 m3/ha and 40.2 tdry matter/ha) has the smallest amount of CWD. Managed forest has very evenly distribution of CWD between developmental phases and it ranges from 41.0 m3/ha and 49.0 tdry matter/ha in the mixed developmental phase to 67.0 m3/ha and 56.2 tdry matter/ha in the juvenile phase. The main reasons for such a large differences are forest management measures (e.g. wood extraction, short rotation time, reduction of natural tree mortality), which decrease quantity, distribution and size of CWD. It was identified that forest management causes reduction and homogenization of CWD on our study plots, which can trigger degradation processes (e.g. soil erosion, reduction of site productivity, reduction of habitats). Tree heights curves show significant differences in maximum tree's height between the virgin and the managed forest. Maximum tree's height is lower in the managed forest which may indicate the reduction of forest productivity due to reduction of CWD. Study has shown some positive effects of forest management on accumulation of underground CWD in the managed forest (from 40.0 tdry matter/ha to 48.2 tdry matter/ha), which significantly exceeds underground CWD in the virgin forest (from 2.0 tdry matter/ha to 22.8 tdry matter/ha).  相似文献   

7.
We present experimental evidence supporting the hypothesis that increased spine length in acacia species is a defense induced by herbivory. Acacia drepanolobium is the dominant tree over large areas of East Africa. Each individual tree is occupied by one of four ant species at our study site. Using two types of electric fences, we have effectively controlled herbivory by megaherbivores (elephants and giraffes) and other large mammalian herbivores at a field site in Laikipia, Kenya since 1995. Mean spine lengths of new spines on trees occupied by the most abundant ant species (presumed to be a defensive mutualist) have shown a slow and steady decline over the first five years of the experiment on branches protected from these herbivores. This reduction has been 35–40%, or approximately half of the reduction in spine length that we anticipate will eventually occur, based on trees that have been protected from herbivory for many years. In contrast, trees occupied by a resident ant species that systematically prunes shoots have shown no reduction in spine length associated with herbivore exclusion treatments. Experimental pruning of shoots similar to that carried out by this ant species resulted in longer spines on seedlings in a greenhouse setting. Simulated large mammal browsing in the field rapidly (re-)induced greater spine lengths on trees that had been protected from large mammals for five years. The slow relaxation of spine length in the absence of herbivory, contrasted with its rapid induction after simulated browsing, suggests that there is a difference in the reliability of these two signals. Spine length responses to herbivory were extremely local (limited to individual branches). These branch-specific responses are consistent with the hypothesis that induced defense in this system evolved in the context of within-tree spatial variation in herbivore pressure, in particular variation in branch height.  相似文献   

8.
The intensity, pattern, and timing of browsing disturbances influence the mobilization of chemical defenses (allelochemicals) and subsequent growth of conifers such as balsam fir, an important food source for various insect and mammalian herbivores. The objective of this study was to examine the induction and persistence of allelochemicals in foliage of balsam fir seedlings as affected by the pattern and timing of browsing disturbance. We conducted a simulated browsing study in a greenhouse environment using four browsing patterns and three persistence times. Total phenols were induced shortly after simulated browsing and persisted for at least 1 month, whereas condensed tannins exhibited a delayed induction but were more persistent, remaining above background levels 2 months after simulated browsing. The chemistry of non-browsed seedlings revealed that a seasonal pattern was evident for both total phenols and condensed tannins. As the experiment progressed through the growing season, background levels of total phenols decreased while those of condensed tannins increased with the two allelochemicals groups appearing to show a negative relationship. These trends suggest that total phenols, which are assumed to have a lower biosynthetic cost and are more quickly mobilized than condensed tannins, are a first line of herbivory defense followed by condensed tannins which take longer to mobilize but have a longer persistence time or that total phenols act as a primary defense against insect herbivores which disturb plants in the early growing season while condensed tannins are mobilized in the late season to defend against mammalian browsers of balsam fir in winter.  相似文献   

9.
The critically endangered box‐gum grassy woodlands of south‐east Australia face numerous threats including the failure of woody plant regeneration caused by over‐browsing. In the Australian Capital Territory, over‐browsing of tree and shrub saplings is likely caused by dense populations of Eastern Grey Kangaroo (Macropus giganteus) found in many nature reserves free of livestock. One possible way to protect these saplings is using coarse woody debris (CWD) as a browsing deterrent. We tested this idea by planting palatable Red Stemmed Wattle (Acacia rubida) saplings among manually applied CWD, among naturally fallen CWD, and in the open, in five woodland reserves. We recorded the proportion of saplings browsed, the number of weeks to first browsing and the browsing severity (sapling height lost). Applied CWD protected saplings from being browsed only at relatively low‐to‐moderate kangaroo browsing pressure (as measured by faecal pellet counts). At relatively high browsing pressure, the probability of a sapling being browsed among applied CWD was 100%, similar to the probability in the open treatment (no CWD). Natural CWD, in contrast, provided some protection even at high browsing pressures. Time to browsing was most affected by browsing pressure, although CWD cover also had an influence. Browsing severity was similar between the three treatments and was only affected by browsing pressure. These results indicate that without protection, palatable woody plant saplings have a high chance of being browsed by kangaroos in woodland reserves, and therefore, some protection is needed for successful regeneration. The CWD being applied to reserves has a limited capacity to protect regenerating saplings. If more protection is wanted a CWD structure more resembling natural fallen timber should be used. This could be done by artificially placing branches around plantings. However, the most important action to facilitate regeneration is to manage kangaroo populations to reduce overall browsing pressure.  相似文献   

10.
The susceptibility of plants to herbivores can be strongly influenced by the identity, morphology and palatability of neighboring plants. While the defensive traits of neighbors often determine the mechanism and strength of associational resistance and susceptibility, the effect of neighbors on plant defense phenotype remains poorly understood. We used field surveys and a prickle‐removal experiment in a semi‐arid Kenyan savanna to evaluate the efficacy of physical defenses against large mammalian herbivores in a common understory plant, Solanum campylacanthum. We then quantified the respective effects of spinescent Acacia trees and short‐statured grasses on browsing damage and prickle density in S. campylacanthum. We paired measurements of prickle density beneath and outside tree canopies with long‐term herbivore‐exclusion experiments to evaluate whether associational resistance reduced defense investment by decreasing browsing damage. Likewise, we compared defense phenotype within and outside pre‐existing and experimentally created clearings to determine whether grass neighbors increased defense investment via associational susceptibility. Removing prickles increased the frequency of browsing by ~25%, and surveys of herbivory damage on defended leaves suggested that herbivores tended to avoid prickles. As predicted, associational resistance and susceptibility had opposing effects on plant phenotype: individuals growing beneath Acacia canopies (or, analogously, within large‐herbivore exclosures) had a significantly lower proportion of their leaves browsed and produced ~ 70–80% fewer prickles than those outside refuges, whereas plants in grass‐dominated clearings were more heavily browsed and produced nearly twice as many prickles as plants outside clearings. Our results demonstrate that associational resistance and susceptibility have strong, but opposing, effects on plant defense phenotype, and that variable herbivore damage is a major source of intraspecific variation in defense phenotype in this system.  相似文献   

11.
Floral herbivores and pollinators are major determinants of plant reproduction. Because interaction of floral herbivores and pollinators occurs when herbivores attack the flowers in the bud and flower stages and because the compensatory ability of plants is known to differ according to the timing of herbivory, the effects of herbivory may differ according to its timing. In this study, we investigated the effects of floral herbivory at different stages on fruit production and seed/ovule ratio at two sites of large populations of the perennial herb, Iris gracilipes for 2 years. Herbivory at the bud and fruit stages both tended to have negative effects on fruit production, but the former caused more severe damage. On the other hand, herbivory at the flower stage tended not to have negative effects on fruit production because the degree of flower loss was smaller in the flower stage. Although herbivory decreased fruit production, flowers did not compensate for the damage by increasing the seed/ovule ratio because reproduction of I. gracilipes was limited by pollen availability rather than resources. These results indicate that floral herbivory at different stages has different effects on plant reproduction.  相似文献   

12.
Interactions among herbivores or between herbivores and other plant natural enemies, such as fungal pathogens, range from competition to facilitation. Moreover, the outcome of these interactions depends on the ecological context where they occur. In this study we examined the effects of clipping, as a surrogate of herbivory by ungulates, on the damage caused by two types of natural enemies (herbivorous insects and foliar fungal pathogens) on bilberry, Vaccinium myrtillus, in combination with nitrogen (N) fertilization representing current N atmospheric deposition. To examine whether the responses of both these natural enemies were mediated by changes in the plant, we estimated the effects of the treatments on bilberry growth and branching and on chlorophyll content as proxy of N content in leaves. Clipping increased the proportion of leaves damaged by herbivorous insects regardless of whether it was combined with N fertilization or not in 2008. In 2007 and 2009 repeated damage to the shrub also facilitated insect herbivory but only under N applications. Regarding fungal infestation incidence, clipping decreased the proportion of infected leaves in all the years considered but only in fertilized plots. Our results suggest that vertebrate herbivores facilitate insect herbivory and reduce fungal infestation but that these effects are dependent on nutritional conditions. Moreover, we found a negative residual correlation between insect herbivory and fungal infestation on bilberry leaves. Therefore, interactions between insect herbivores and fungal pathogens could be implicated in the final outcome of interactions between browsing ungulates and both bilberry natural enemies.  相似文献   

13.
Coarse woody debris (CWD) volume and diversity are vital attributes of forest ecosystems. However, despite their importance, their long-term dynamics associated with fire- or logging-origin and overstory type have not been examined in boreal forest. We hypothesize that (1) CWD compositional diversity increases with stand development whereas CWD volume follows a U-shaped pattern. Furthermore, we attempted to test if (2) CWD volume and compositional diversity converge for postlogged and postfire stands through stand development, and (3) mixedwoods have more CWD volume and greater compositional diversity than conifer or broadleaf overstory types. We sampled 72 stands ranging in age from 7 to 201 years in fire-origin stands and 7–31 years in managed stands with conifer, mixedwood, and broadleaf overstory types in central boreal Canada. For fire-origin stands, snag volume was 100–260 m3/ha in 7-year-old stands, 5–20 m3/ha in 25-year-old stands, and 25–60 m3/ha in older stands; downed woody debris (DWD) volume decreased from 7 to 72–90 year-old stands, increased in 124- to 139-year-old stands, then either decreased or increased in 201-year-old stands depending on overstory type. CWD diversity increased from 25 to 124–139 year-old and plateaued, but in 7-year-old stands, CWD diversity was as high as that in the 124 and up year-old age classes. Logging resulted in a smaller amount and lower size variability of CWD in 7-year-old stands, with a larger portion being fast-decomposing Betula papyrifera. Most CWD characteristics had not converged by approximately 30 years since disturbance between the two stand origins. More diverse CWD occurred in mixedwoods, but conifer stands contained the greatest CWD volume except in 7 year-old postfire stands. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. B. W. Brassard collected and analyzed data and wrote the paper. H. Y. H. Chen conceived and designed the study, analyzed data, and critiqued earlier drafts of the paper.  相似文献   

14.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

15.
Tsounis  G.  Steele  M. A.  Edmunds  P. J. 《Coral reefs (Online)》2020,39(5):1299-1311

Increasing abundance of arborescent octocorals (often referred to as gorgonians) on Caribbean reefs raises the question of whether habitat structure provided by octocorals can mediate a transition between coral- and algal- dominated states by increasing fish abundance and herbivory. This study tested the hypotheses that feeding rates and densities of demersal reef fishes are affected by the habitat structure provided by dense octocoral communities. Surveys of fishes on coral reefs in St John, US Virgin Islands, found 1.7-fold higher densities, and 2.4-fold higher feeding rates within versus outside of dense octocoral canopies. This difference, however, was only seen at sites with octocoral densities > 8 colonies m−2. Furthemore, the proximity of octocoral colonies to fish had an effect on the grazing rate of key herbivores (surgeonfishes and parrotfishes), with a 53% higher feeding rate (1.90 ± 0.11 bites min−1 m−2) near octocorals (< 20 or 30 cm, depending on the site) versus farther from them (1.24 ± 0.09 bites min−1 m−2). Finally, within the canopy of dense octocoral communities (17 colonies m−2), reef fishes fed at a rate that was 2.2-fold higher within the community than at the edge of the community that faced an adjacent sand patch. Fish abundance, however, was not uniformly higher within versus at the edge of the octocoral community, as ecotone specialists such as gobiids, blennioids, ostraciids, holocentrids, labrids, and pomacentrids were 1.3—2.3 times more abundant at the edge. In contrast, other taxa of demersal fishes, notably herbivores, were twice as abundant within octocoral communities than at the edges. Together, these results reveal an association between habitat structure created by octocorals on shallow reefs and increased feeding rates of demersal fishes (including those of herbivores). The potential of octocorals to increase herbivory that could mediate stony coral recovery is therefore worthy of further study.

  相似文献   

16.
Seagrass meadows store globally significant organic carbon (Corg) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication‐driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg/m2) than previously vegetated counterparts (0.5 ± 0.1 kg Corg/m2). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg/m2, respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg m?2 year?1, respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06–0.14 Tg CO2‐eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11–21 Tg CO2‐eq since the 1950s, increasing cumulative CO2 emissions from land‐use change in Australia by 1.1%–2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.  相似文献   

17.
Mycorrhizal associations are widespread in high‐latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16‐year‐old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest‐tundra ecotone. We also used high‐throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m2) than in ambient conditions (0.66 ± 0.17 g C/m2) and was positively influenced by soil thawing degree‐days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m2; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near‐significant positive effect of herbivore exclusion (p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context‐dependent ways in subarctic ecosystems. Considering the importance of root‐associated fungi for ecosystem carbon balance, these findings could have far‐reaching implications.  相似文献   

18.
Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies.Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored.Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent.Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.  相似文献   

19.
20.
Herbivores have diverse impacts on their host plants, potentially altering survival, growth, fecundity, and other aspects of plant performance. Especially for longer-lived plant species, the effects of a single herbivore species can vary markedly throughout the life of the host plant. In addition, the effects of herbivory during any given life history stage of a host plant may also vary considerably with different types of herbivores. To investigate the effects of herbivory by black-tailed deer (Odocoileus hemionus columbianus) and snails (Helminthoglypta arrosa and Helix aspersa) on a nitrogen-fixing shrub, Lupinus chamissonis, we established three exclosure experiments in a sand dune system on the coast of northern California. These experiments documented that deer browsing significantly reduced the volume and growth rate of lupines in the seedling and juvenile life stages. Since plant volume was strongly correlated with aboveground dry biomass for lupines, such herbivore-induced reductions in volume should translate into losses of aboveground biomass. Deer browsing also significantly altered the likelihood of attack by and density of a leaf-galling cecidomyid fly (Dasineura lupinorum), suggesting that a vertebrate herbivore indirectly affected an invertebrate herbivore in this system. Although deer did not significantly affect the survival of lupine seedlings and juveniles, individuals protected from deer had consistently greater survival in the two separate experiments. Our results revealed that snails did not have a significant effect on the survival or growth of juvenile plants, despite being common on and around lupines. An exclosure experiment revealed that herbivory by deer significantly reduced the shoot lengths of mature shrubs, but led only to a minimal reduction in growth rates. In addition, we found that browsed shrubs had significantly greater inflorescence production, but also produced individual seeds with significantly reduced mass. Collectively, these data indicate that deer and snails have widely differing effects on their shared host plant; browsing by deer indirectly affects insect herbivores, and the impacts of deer change markedly with the life history stage of their host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号