首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Acute myeloid leukaemia (AML) is a biologically heterogeneous disease with an overall poor prognosis; thus, novel therapeutic approaches are needed. Our previous studies showed that 4‐amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a new derivative of all‐trans retinoic acid (ATRA), could induce AML cell differentiation and cycle arrest. The current study aimed to determine the potential pharmacological mechanisms of ATPR therapies against AML. Our findings showed that E2A was overexpressed in AML specimens and cell lines, and mediate AML development by inactivating the P53 pathway. The findings indicated that E2A expression and activity decreased with ATPR treatment. Furthermore, we determined that E2A inhibition could enhance the effect of ATPR‐induced AML cell differentiation and cycle arrest, whereas E2A overexpression could reverse this effect, suggesting that the E2A gene plays a crucial role in AML. We identified P53 and c‐Myc were downstream pathways and targets for silencing E2A cells using RNA sequencing, which are involved in the progression of AML. Taken together, these results confirmed that ATPR inhibited the expression of E2A/c‐Myc, which led to the activation of the P53 pathway, and induced cell differentiation and cycle arrest in AML.  相似文献   

2.
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all‐trans‐retinoic acid (ATRA) pre‐induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01–100 μmol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 μmol/L ATRA pre‐induction significantly improved neuronal differentiation efficiency and neural‐cell survival. Compared with MNM alone induced neural‐like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule‐associated protein‐2 (MAP‐2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line‐derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre‐induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXRα and RXRγ (and to a lesser extent, RXRβ) were weakly expressed in MSCs. But the expression of RARα and RARγ was readily detectable, whereas RARβ was undetectable. However, at 24 h after ATRA treatment, the expression of RARβ, not RARα or RARγ, increased significantly. We further found the subnuclear redistribution of RARβ in differentiated neurons, suggesting that RARβ may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre‐activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs.  相似文献   

3.
4.
The effect of all-trans retinoic acid (ATRA) on leukaemia cell differentiation, proliferation and induction of apoptosis was studied by using autonomously growing blast cells isolated from eight patients with acute myeloblastic leukaemia (AML) either at diagnosis ( n=4) or at relapse (n=4). No morphological or functional differentiation induced by ATRA was observed in any of the cases studied. In cell cultures, inhibition of leukaemia cell growth by ATRA was obvious, especially in the case of clonogenic cells, and it was both time- and concentration-dependent. Induction of apoptosis was more difficult to achieve. The cells retained over 90% viability in suspension when the ATRA exposure at any of the concentrations studied was 48 h or less. When the time of exposure to ATRA was longer than 48 h, the viability of the cells decreased in a concentration-dependent manner. Apoptosis was observed morphologically in each of the AML cases with 10-5 to 10-8 M ATRA, if the incubation time of cells in ATRA was 72 h. The percentage of apoptotic cells increased with increasing ATRA concentrations from 12± 9% of 10-8 M ATRA to 78±12% of 10-5 M ATRA. The DNA electrophoretic method was able to detect apoptosis in all the AML samples exposed to 10-7 and 10-6 ATRA for 48 h and occasionally in cases where lower concentrations and longer exposure time were used. In conclusion, the present study shows that it is possible to induce apoptotic leukaemia cell death in vitro with ATRA in AML, and this effect is dependent on both concentration and exposure time.  相似文献   

5.
Alterations in cell cycle pathways and retinoic acid signaling are implicated in leukemogenesis. However, little is known about the roles of cyclin-dependent kinases (CDKs) in treatment response of leukemia. In this study, we observed that CDK1 expression was significantly higher in bone marrow from 42 patients with acute myeloid leukemia (AML) at recurrence than that at first diagnosis (p = 0.04). AML patients had higher level of nuclear CDK1 in their leukemic blasts tended to have poorer clinical outcome compared with those with lower levels. We showed that CDK1 function is required for all-trans retinoic acid (ATRA) to achieve the optimal effect in U-937 human leukemic cells. CDK1 modulates the levels of P27kip and AKT phosphorylation in response to ATRA treatment. Further, we show, for the first time, that RARγ in concert with ATRA regulates protein levels of CDK1 and its subcellular localization. The regulation of the subcellular content of CDK1 and RARγ by ATRA is an important process for achieving an effective response in treatment of leukemia. RARγ and CDK1 form a reciprocal regulatory circuit in the nucleus and influence the function and protein stability of each other and the level of P27kip protein. In addition, expression of wee1 kinase and Cdc25A/C phosphatases also coincide with CDK1 expression and its subcellular localization in response to ATRA treatment. Our study reveals a novel mechanism by which CDK1 and RARγ coordinate with ATRA to influence cell cycle progression and cellular differentiation.  相似文献   

6.
Acute myeloid leukaemia (AML) comprises a range of disparate genetic subtypes, involving complex gene mutations and specific molecular alterations. Post‐translational modifications of specific proteins influence their translocation, stability, aggregation and even leading disease progression. Therapies that target to post‐translational modification of specific proteins in cancer cells represent a novel treatment strategy. Non‐homogenous subcellular distribution of PLSCR1 is involved in the primary AML cell differentiation. However, the nuclear translocation mechanism of PLSCR1 remains poorly understood. Here, we leveraged the observation that nuclear translocation of PLSCR1 could be induced during wogonoside treatment in some primary AML cells, despite their genetic heterogeneity that contributed to the depalmitoylation of PLSCR1 via acyl protein thioesterase 1 (APT‐1), an enzyme catalysing protein depalmitoylation. Besides, we found a similar phenomenon on another AML‐related protein, N‐RAS. Wogonoside inhibited the palmitoylation of small GTPase N‐RAS and enhanced its trafficking into Golgi complex, leading to the inactivation of N‐RAS/RAF1 pathway in some primary AML cells. Taken together, our findings provide new insight into the mechanism of wogonoside‐induced nuclear translocation of PLSCR1 and illuminate the influence of N‐RAS depalmitoylation on its Golgi trafficking and RAF1 signalling inactivation in AML.  相似文献   

7.
Despite progress in the treatment of acute myelogenous leukaemia (AML) the outcome often remains poor. Tumour necrosis factor related apoptosis-inducing ligand (TRAIL) is a promising therapeutic agent in many different types of tumours, but AML cells are relatively insensitive to TRAIL-induced apoptosis. Here we show that TRAIL-induced apoptosis in AML cells is predominantly mediated by death receptor 4 (DR4) and not DR5. Therefore, we constructed a variant of TRAIL (rhTRAIL-C3) that is a strong inducer of DR4-mediated apoptosis. TRAIL-C3 demonstrated much stronger pro-apoptotic activity than wild-type (WT) TRAIL in a panel of AML cell lines as well as in primary AML blasts. The higher pro-apoptotic potential was further enhanced when the TRAIL mutant was used in combination with BMS-345541, a selective inhibitor of inhibitor-κB kinases. It illustrates that combination of this TRAIL variant with chemotherapeutics or other targeted agents can kill AML with high efficacy. This may represent a major advantage over the currently used therapies that have serious toxic side effects. The high efficacy of rhTRAIL-C3 containing therapies may enable the use of lower drug doses to reduce the toxic side effects and improve patient outcome. Our findings suggest that the rational design of TRAIL variants that target DR4 potentiate the death-inducing activity of TRAIL and offer a novel therapeutic strategy for the treatment of AML.  相似文献   

8.
Acute myeloid leukaemia (AML) is a malignant disorder of the myeloid blood lineage characterized by impaired differentiation and increased proliferation of hematopoietic precursor cells. Recent technological advances have led to an improved understanding of AML biology but also uncovered the enormous cytogenetic and molecular heterogeneity of the disease. Despite this heterogeneity, AML is mostly managed by a ‘one‐size‐fits‐all’ approach consisting of intensive, highly toxic induction and consolidation chemotherapy. These treatment protocols have remained largely unchanged for the past several decades and only lead to a cure in approximately 30–35% of cases. The advent of targeted therapies in chronic myeloid leukaemia and other malignancies has sparked hope to improve patient outcome in AML. However, the implementation of targeted agents in AML therapy has been unexpectedly cumbersome and remains a difficult task due to a variety of disease‐ and patient‐specific factors. In this review, we describe current standard and investigational therapeutic strategies with a focus on targeted agents and highlight potential tools that might facilitate the development of targeted therapies for this fatal disease. The classes of agents described in this review include constitutively activated signalling pathway inhibitors, surface receptor targets, epigenetic modifiers, drugs targeting the interaction of the hematopoietic progenitor cell with the stroma and drugs that target the apoptotic machinery. The clinical context and outcome with these agents will be examined to gain insight about their optimal utilization.  相似文献   

9.
The hepatocyte growth factor (HGF)/c‐Met signalling pathway is deregulated in most cancers and associated with a poor prognosis in breast cancer. Cardiotoxin III (CTX III), a basic polypeptide isolated from Naja naja atra venom, has been shown to exhibit anticancer activity. In this study, we use HGF as an invasive inducer to investigate the effect of CTX III on MDA‐MB‐231 cells. When cells were treated with non‐toxic doses of CTX III, CTX III inhibited the HGF‐promoted cell migration and invasion. CTX III significantly suppressed the HGF‐induced c‐Met phosphorylation and downstream activation of phosphatidylinositol 3‐kinase (PI3k)/Akt and extracellular signal‐regulated kinase (ERK) 1/2. Additionally, CTX III similar to wortmannin (a PI3K inhibitor) and U0126 (an upstream kinase regulating ERK1/2 inhibitor) attenuated cell migration and invasion induced by HGF. This effect was paralleled by a significant reduction in phosphorylation of IκBα kinase and IκBα and nuclear translocation of nuclear factor κB (NF‐κB) as well as a reduction of matrix metalloproteinase‐9 (MMP‐9) activity. Furthermore, the c‐Met inhibitor PHA665752 inhibited HGF‐induced MMP‐9 expression, cell migration and invasion, as well as the activation of ERK1/2 and PI3K/Akt, suggesting that ERK1/2 and PI3K/Akt activation occurs downstream of c‐Met activation. Taken together, these findings suggest that CTX III inhibits the HGF‐induced invasion and migration of MDA‐MB‐231 cells via HGF/c‐Met‐dependent PI3K/Akt, ERK1/2 and NF‐κB signalling pathways, leading to the downregulation of MMP‐9 expression. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The novel small molecule ingenol 3-angelate (PEP005) has been shown previously to induce apoptosis in leukaemic cell lines and primary AML cells, an effect that requires the expression of protein kinase C-delta (PKCδ). Here we have investigated signalling events downstream of PKCδ that determine sensitivity of AML cells to PEP005. We show that activation of ERK1/2 MAP kinase occurred in both sensitive and resistant cells and that induction of apoptosis required sustained signalling through the ERK1/2 pathway. Inhibition of ERK1/2 signalling using the MEK inhibitor PD98059 inhibited PEP005-induced apoptosis and activation of ERK1/2 was shown to occur downstream of PKC activation. The data show that PEP005-induced apoptosis is both PKC and ERK1/2 dependent and indicate that chronic activation of ERK1/2 in leukaemic cells delivers a pro-apoptotic rather than a proliferative or survival signal.  相似文献   

11.
12.
Background information. Activation of MAPKs (mitogen‐activated protein kinases), in particular ERK1/2 (extracellular‐signal‐regulated kinase 1/2), has been reported to take place in a large variety of cell types after hypo‐osmotic cell swelling. Depending on cell type, ERK1/2 phosphorylation can then serve or not the RVD (regulatory volume decrease) process. The present study investigates ERK1/2 activation after aniso‐osmotic stimulations in turbot hepatocytes and the potential link between phosphorylation of these proteins and RVD. Results. In turbot hepatocytes, Western‐blot analysis shows that a hypo‐osmotic shock from 320 to 240 mOsm·kg?1 induced a rapid increase in ERK1/2 phosphorylation, whereas a hyper‐osmotic shock from 320 to 400 mOsm·kg?1 induced no significant change in the phosphorylation of these proteins. The hypo‐osmotic‐induced ERK1/2 phosphorylation was significantly prevented when hypo‐osmotic shock was performed in the presence of the specific MEK (MAPK/ERK kinase) inhibitor PD98059 (100 μM). In these conditions, the RVD process was not altered, suggesting that ERK1/2 did not participate in this process in turbot hepatocytes. Moreover, the hypo‐osmotic‐induced activation of ERK1/2 was significantly prevented by breakdown of extracellular ATP by apyrase (10 units·ml?1), by inhibition of purinergic P2 receptors by suramin (100 μM) or by calcium depletion using EGTA (1 mM) and thapsigargin (1 μM). Conclusions. In turbot hepatocytes, hypo‐osmotic swelling but not hyper‐osmotic shrinkage induced the activation of ERK1/2. However, these proteins do not seem to be involved in the RVD process. Their hypo‐osmotic‐induced activation is partially due to cascades of signalling events triggered by the binding of released ATP on purinergic P2 receptors and requires the presence of calcium.  相似文献   

13.
AML1‐ETO, the most common fusion oncoprotein by t (8;21) in acute myeloid leukaemia (AML), enhances hematopoietic self‐renewal and leukemogenesis. However, currently no specific therapies have been reported for t (8;21) AML patients as AML1‐ETO is still intractable as a pharmacological target. For this purpose, leukaemia cells and AML1‐ETO‐induced murine leukaemia model were used to investigate the degradation of AML1‐ETO by melatonin (MLT), synthesized and secreted by the pineal gland. MLT remarkedly decreased AML1‐ETO protein in leukemic cells. Meanwhile, MLT induced apoptosis, decreased proliferation and reduced colony formation. Furthermore, MLT reduced the expansion of human leukemic cells and extended the overall survival in U937T‐AML1‐ETO‐xenografted NSG mice. Most importantly, MLT reduced the infiltration of leukaemia blasts, decreased the frequency of leukaemia stem cells (LSCs) and prolonged the overall survival in AML1‐ETO‐induced murine leukaemia. Mechanistically, MLT increased the expression of miR‐193a, which inhibited AML1‐ETO expression via targeting its putative binding sites. Furthermore, MLT decreased the expression of β‐catenin, which is required for the self‐renewal of LSC and is the downstream of AML1‐ETO. Thus, MLT presents anti‐self‐renewal of LSC through miR‐193a‐AML1‐ETO‐β‐catenin axis. In conclusion, MLT might be a potential treatment for t (8;21) leukaemia by targeting AML1‐ETO oncoprotein.  相似文献   

14.
Luo P  Lin M  Li L  Yang B  He Q 《PloS one》2011,6(11):e27298
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Differentiated human NBs are associated with better outcome and lower stage; induction of differentiation is considered to be therapeutically advantageous. All-trans retinoic acid (ATRA) has been shown to induce the differentiation of neuroblastoma (NB) cell lines. The proteasome inhibitor bortezomib inhibits cell growth and angiogenesis in NBs. Here, we investigated the synergistic effect between bortezomib and ATRA in inducing NB cell differentiation in different NB cell lines. Bortezomib combined with ATRA had a significantly enhanced antiproliferative effect. This inhibition was characterized by a synergistic increase in neuronal differentiation. At the same time, the combination therapy showed little neuronal toxicity which was assessed in primary cultures of rat cerebellar granule cells by the MTT assay, PI staining. The combination of bortezomib and ATRA triggered increased differentiation through the activation of proteins, including RARα, RARβ, RARγ, p-JNK and p21, compared with ATRA treatment alone. Using JNK inhibitor SP600125 to block JNK-dependent activity, the combination therapy-induced neuronal differentiation was partially attenuated. In addition, p21 shRNA had no effect on the combination therapy-induced neuronal differentiation. The in vivo antitumor activities were examined in human NB cell xenografts and GFP-labeled human NB cell xenografts. Treatment of human NB cell CHP126-bearing nude mice with ATRA plus bortezomib resulted in more significant tumor growth inhibition than mice treated with either drug alone. These findings provide the rationale for the development of a new therapeutic strategy for NB based on the pharmacological combination of ATRA and bortezomib.  相似文献   

15.
16.
Background information. Nitric oxide (NO) is an important molecule in innate immune responses. In molluscs NO is produced by mobile defence cells called haemocytes; however, the molecular mechanisms that regulate NO production in these cells is poorly understood. The present study focused on the role of cell signalling pathways in NO production by primary haemocytes from the snail Lymnaea stagnalis. Results. When haemocytes were challenged with PMA (10 μM) or the β‐1,3‐glucan laminarin (10 mg/ml), an 8‐fold and 4‐fold increase in NO production were observed after 60 min respectively. Moreover, the NOS (NO synthase) inhibitors L‐NAME (NG‐nitro‐L‐arginine methyl ester) and L‐NMMA (NG‐monomethyl‐L‐arginine) were found to block laminarin‐ and PMA‐induced NO synthesis. Treatment of haemocytes with PMA or laminarin also increased the phosphorylation (activation) status of PKC (protein kinase C). When haemocytes were preincubated with PKC inhibitors (calphostin C or GF109203X) or inhibitors of the ERK (extracellular‐signal‐regulated kinase) pathway (PD98059 or U0126) prior to challenge, significant reductions in PKC and ERK phosphorylation and NO production were observed following exposure to laminarin or PMA. The greatest effect on NO production was seen with GF109203X and U0126, with PMA‐induced NO production inhibited by 94% and 87% and laminarin‐induced NO production by 50% and 91% respectively. Conclusions. These data suggest that ERK and PKC comprise part of the signalling machinery that regulates NOS activation and subsequent production of NO in molluscan haemocytes. To our knowledge, this is the first report that shows a role for these signalling proteins in the generation of NO in invertebrate defence cells.  相似文献   

17.
Pharmacological modulation of autophagy has been referred to as a promising therapeutic strategy for cancer. Matrine, a main alkaloid extracted from Sophora flavescens Ait, has antitumour activity against acute myelocytic leukaemia (AML). Whether autophagy is involved in antileukaemia activity of matrine remains unobvious. In this study, we demonstrated that matrine inhibited cell viability and colony formation via inducing apoptosis and autophagy in AML cell lines HL‐60, THP‐1 and C1498 as well as primary AML cells. Matrine promoted caspase‐3 and PARP cleavage dose‐dependently. Matrine up‐regulated the level of LC3‐II and down‐regulated the level of SQSTM1/p62 in a dose‐dependent way, indicating that autophagy should be implicated in anti‐AML effect of matrine. Furthermore, the autophagy inhibitor bafilomycin A1 relieved the cytotoxicity of matrine by blocking the autophagic flux, while the autophagy promoter rapamycin enhanced the cytotoxicity of matrine. Additionally, matrine inhibited the phosphorylation of Akt, mTOR and their downstream substrates p70S6K and 4EBP1, which led to the occurrence of autophagy. In vivo study demonstrated that autophagy was involved in antileukaemia effect of matrine in C57BL/6 mice bearing murine AML cell line C1498, and the survival curves showed that mice did benefit from treatment with matrine. Collectively, our findings indicate that matrine exerts antitumour effect through apoptosis and autophagy, and the latter one might be a potential therapeutic strategy for AML.  相似文献   

18.
Cardiotonic steroid (CTS) ouabain is a well‐established inhibitor of Na,K‐ATPase capable of inducing signalling processes including changes in the activity of the mitogen activated protein kinases (MAPK) in various cell types. With increasing evidence of endogenous CTS in the blood and cerebrospinal fluid, it is of particular interest to study ouabain‐induced signalling in neurons, especially the activation of MAPK, because they are the key kinases activated in response to extracellular signals and regulating cell survival, proliferation and apoptosis. In this study we investigated the effect of ouabain on the level of phosphorylation of three MAPK (ERK1/2, JNK and p38) and on cell survival in the primary culture of rat cerebellar cells. Using Western blotting we described the time course and concentration dependence of phosphorylation for ERK1/2, JNK and p38 in response to ouabain. We discovered that ouabain at a concentration of 1 μM does not cause cell death in cultured neurons while it changes the phosphorylation level of the three MAPK: ERK1/2 is phosphorylated transiently, p38 shows sustained phosphorylation, and JNK is dephosphorylated after a long‐term incubation. We showed that ERK1/2 phosphorylation increase does not depend on ouabain‐induced calcium increase and p38 activation. Changes in p38 phosphorylation, which is independent from ERK1/2 activation, are calcium dependent. Changes in JNK phosphorylation are calcium dependent and also depend on ERK1/2 and p38 activation. Ten‐micromolar ouabain leads to cell death, and we conclude that different effects of 1‐μM and 10‐μM ouabain depend on different ERK1/2 and p38 phosphorylation profiles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
20.
CTRP3 (C1q and tumour necrosis factor‐related protein 3)/cartducin, a novel serum protein, is a member of the CTRP superfamily. Although the CTRP3/cartducin gene is markedly up‐regulated in rat carotid arteries after balloon injury, little is known about its biological roles in arterial remodelling and neointima formation in injured blood vessels. We have investigated the mechanisms underlying CTRP3/cartducin up‐regulation and the in vitro effects of CTRP3/cartducin on vascular smooth muscle cells. CTRP3/cartducin expression in cultured p53LMAC01 vascular smooth muscle cells was induced by TGF‐β1 (transforming growth factor‐β1), but not by bFGF (basic fibroblast growth factor) or PDGF‐BB (platelet‐derived growth factor‐BB). Exogenous CTRP3/cartducin promoted the proliferation of p53LMAC01 cells in a dose‐dependent manner via ERK1/2 (extracellular signal‐regulated kinase 1/2)‐ and MAPK (p38 mitogen‐activated protein kinase)‐signalling pathways. In contrast, CTRP3/cartducin exhibited no effect on the migration of p53LMAC01 cells. Taken together, the results of the present study demonstrate a novel biological role of CTRP3/cartducin in promoting vascular smooth muscle cell proliferation in blood vessel walls after injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号