首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coral reef restoration aims to help threatened coral ecosystems recover from recent severe declines. Here we address whether coral fragments should be out‐planted individually or in larger aggregations. Theory suggests alternative possible outcomes: whereas out‐plants within aggregations might suffer from heightened negative interactions with neighbors (e.g. competition for space), they may alternatively benefit from positive interactions with neighbors (e.g. buffering wave disturbances). On a degraded reef in the Caribbean (St. Croix, USVI), using out‐plants of the critically endangered staghorn coral Acropora cervicornis, we experimentally tested how aggregation density (1–20 out‐planted coral fragments spaced at approximately 5 cm) influenced initial coral growth (over 3 months). Coral growth declined as a function of aggregation size, and out‐plants within larger aggregations had fewer and shorter secondary branches on average, indicative of horizontal competition for space. Our results therefore suggest that wide spacing of individuals will maximize the initial growth of out‐planted branching corals.  相似文献   

2.
The global decline of corals has created an urgent need for effective, science‐based methods to augment coral populations and restore important ecosystem functions. To meet this challenge, the field of coral restoration has rapidly evolved over the past decade. However, despite widespread efforts to outplant corals and monitor survivorship, there is a shortage of information on the effects of coral restoration on reef communities or important ecosystem functions. To fill this knowledge gap, we examined the effects of restoration on three major criteria: diversity, community structure, and ecological processes. We conducted surveys of four restored sites in the Florida Keys ranging in restoration effort (500–2,300 corals outplanted) paired with surveys of nearby, unmanipulated control sites. Coral restoration successfully enhanced coral populations, increasing coral cover 4‐fold, but manifested in limited differences in coral and fish communities. Some restored sites had higher abundance of herbivorous fish, rates of herbivory, or more juvenile‐sized corals, but these effects were limited to individual reefs. Damselfish were consistently more abundant at restored compared to control sites. Despite augmenting target coral populations, 3 years of coral restoration has not facilitated many of the positive feedbacks that help reinforce coral success. In a time of increasingly frequent disturbances, it is urgent we hasten the speed at which reefs recover important ecological processes, such as herbivory and nutrient cycling, that make reefs more resistant and resilient if we are to achieve long‐term restoration success.  相似文献   

3.
4.
Oceanographic features influence the transport and delivery of marine larvae, and physical retention mechanisms, such as eddies, can enhance self‐recruitment (i.e. the return of larvae to their natal population). Knowledge of exact locations of hatching (origin) and settlement (arrival) of larvae of reef animals provides a means to compare observed patterns of self‐recruitment ‘connectivity’ with those expected from water circulation patterns. Using parentage inference based on multiple sampling years in Moorea, French Polynesia, we describe spatial and temporal variation in self‐recruitment of the anemonefish Amphiprion chrysopterus, evaluate the consistency of net dispersal distances of self‐recruits against the null expectation of passive particle dispersal and test the hypothesis that larvae originating in certain reef habitats (lagoons and passes) would be retained and thus more likely to self‐recruit than those originating on the outer (fore) reef. Estimates of known self‐recruitment were consistent across the sampling years (~25–27% of sampled recruits). For most (88%) of these self‐recruits, the net distance between hatching and settlement locations was within the maximum dispersal distance expected for a neutrally buoyant passive particle based on the longest duration of the larval dispersive phase and the average direction and speed of current flow around Moorea. Furthermore, a parent of a given body size on the outer (fore) reef of Moorea was less likely to produce self‐recruits than those in passes. Our findings show that even a simple dispersal model based on net average flow and direction of alongshore currents can provide insight into landscape‐scale retention patterns of reef fishes.  相似文献   

5.
One of the means of creating a more robust methodology for ecological restoration involves reducing the gap between ecological theory and restoration practices. A common strategy to do so is using meta‐analysis to understand key drivers of restoration outcomes. “Active” and “passive” is a dichotomy often used to separate restoration strategies in such meta‐analyses. We investigate previously raised concerns about selection bias and subjective categorization of strategies. We promote a paired experimental design in future empirical research and propose the use of three categories of restoration strategy in lieu of “passive” and “active” to alleviate inconsistency in definitions and categorization.  相似文献   

6.
Re‐attaching or out‐planting coral as fragments, colonies, and on larval settlement devices to substrates is a major bottleneck limiting scalabilty and viability of reef restoration practices. Many attachment approaches are in use, but none that are low‐cost, opportunistic, rapid but effective, for integration into existing tour operations on the Great Barrier Reef (GBR) where staff and boat time is a major cost and chemical fixatives cannot be easily used. We describe a novel attachment device—Coralclip®—developed to meet this need and so aid maintenance and restoration of GBR tourism sites. Coralclip® is a stainless steel springclip attached by a nail integrated through the spring coil, and can be deployed with a coral fragment in as fast as 15 seconds. Initial laboratory tests demonstrated that Coralclip® secured coral fragments or larval settlement tiles under dynamic flow regimes characteristic of exposed reefs. Coral out‐planting from fragments of opportunity and from nurseries (n = 4,580; 0.3–1.9 coral/minute; US$0.6–3.0/coral deployed) or larval settlement tiles (n = 400; 2.5 tiles/minute; US$0.5 tile deployed?1) when deployed by divers from routine boat operations at Opal Reef confirmed highly effective attachment, with ≤15% failure of clips found after 3–7 months. We discuss how Coralclip® is a cost‐effective means to support reef maintenance and restoration practices.  相似文献   

7.
Calls for coral reef restoration are increasing amidst continued declines, yet we know little about long‐term outcomes and conditions that lead to successful coral recovery. Here, we report on one of the longest monitoring studies following 16 years of large‐scale, “low‐tech” experimental reef rehabilitation on rubble fields created by chronic blast fishing in Komodo National Park, Indonesia. After blast fishing had stopped, in the absence of rehabilitation, hard coral cover in rubble fields remained about 3% from 1999 to 2016, but on rehabilitation treatments, cover increased from 0% in 2002 to 44.5% (±21.9% SD) in 2016. Coral cover varied among sites and treatments (ranging from <5 to >80% in 2016) in patterns that may reflect current strength and turbidity. Our results demonstrate that low‐tech substrate stabilization can facilitate natural coral recruitment and growth. We conclude that relatively low‐cost methods can deliver sustained rehabilitation of hard coral cover and that long‐term monitoring should be incorporated more widely in restoration activities to inform return on investment.  相似文献   

8.
We are developing techniques to restore coral populations by enhancing larval supply using “artificial spawning hotspots” that aggregate conspecific adult corals. However, no data were available regarding how natural larval supply from wild coral populations is influenced by fertilization rate and how this is in turn affected by local population density and genetic diversity. Therefore, we assessed population density and genetic diversity of a wild, arborescent coral, Acropora yongei, and compared these parameters with those of an artificially established A. yongei population in the field. The population density of wild arborescent corals was only 0.27% of that in the artificial population, even in a high‐coverage area. Genetic diversity was also low in the wild population compared with the artificial population, and approximately 10% of all wild colonies were clones. Based on these results, the larval supply in the artificial population was estimated to be at least 1,400 times higher than that in wild A. yongei populations for the same area of adult population.  相似文献   

9.
Cell‐free protein synthesis is a promising tool to take biotechnology outside of the cell. A cell‐free approach provides distinct advantages over in vivo systems including open access to the reaction environment and direct control over all chemical components for facile optimization and synthetic biology integration. Promising applications of cell‐free systems include portable diagnostics, biotherapeutics expression, rational protein engineering, and biocatalyst production. The highest yielding and most economical cell‐free systems use an extract composed of the soluble component of lysed Escherichia coli. Although E. coli lysis can be highly efficient (>99.999%), one persistent challenge is that the extract remains contaminated with up to millions of cells per mL. In this work, we examine the potential of multiple decontamination strategies to further reduce or eliminate bacteria in cell‐free systems. Two strategies, sterile filtration and lyophilization, effectively eliminate contaminating cells while maintaining the systems’ protein synthesis capabilities. Lyophilization provides the additional benefit of long‐term stability at storage above freezing. Technologies for personalized, portable medicine and diagnostics can be expanded based on these foundational sterilized and completely “cell‐free” systems. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1716–1719, 2015  相似文献   

10.
Apocarotenoids, such as α‐, β‐ionone, and retinol, have high commercial values in the food and cosmetic industries. The demand for natural ingredients has been increasing dramatically in recent years. However, attempts to overproduce β‐ionone in microorganisms have been limited by the complexity of the biosynthetic pathway. Here, an Escherichia coli‐based modular system was developed to produce various apocarotenoids. Incorporation of enzyme engineering approaches (N‐terminal truncation and protein fusion) into modular metabolic engineering strategy significantly improved α‐ionone production from 0.5 mg/L to 30 mg/L in flasks, producing 480 mg/L of α‐ionone in fed‐batch fermentation. By modifying apocarotenoid genetic module, this platform strain was successfully re‐engineered to produce 32 mg/L and 500 mg/L of β‐ionone in flask and bioreactor, respectively (>80‐fold higher than previously reported). Similarly, 33 mg/L of retinoids was produced in flask by reconstructing apocarotenoid module, demonstrating the versatility of the “plug‐n‐play” modular system. Collectively, this study highlights the importance of the strategy of simultaneous modular pathway optimization and enzyme engineering to overproduce valuable chemicals in microbes.  相似文献   

11.
Restoration is important in urban areas where habitat destruction is greatest. It incorporates many levels of intervention, with creation of new habitat the most extreme form. Most research on habitat creation has been terrestrial, or in marine habitats dominated by large structuring biota, such as mangroves. Intertidal boulder‐fields in urban areas are vulnerable to disturbances and habitat loss, which adversely affect numerous habitat specialists. This study describes experiments in which quarried stones were used to create new habitat outside natural boulder‐fields as a practical approach to restoring habitat. Colonization by specialist fauna and by common algae and invertebrates was measured for a year after deployment. Despite sessile assemblages on new boulders differing from those on natural boulders, common and rare animals rapidly colonized the new habitat. There was no clear succession, but colonization was variable and patchy at all scales examined, although diversities and abundances of some species in this novel habitat matched those of natural boulders within a few months. Rare and common animals generally colonized the new habitat as adults moving in from surrounding areas. Creating new boulder‐fields using quarried rocks is a successful approach to restoration and conservation of fauna where natural boulder‐fields are threatened.  相似文献   

12.
Coral restoration is widely used around the world to address dramatic declines in coral cover; however, very few studies have looked specifically at the temporal response of fish assemblages (i.e. abundance and diversity) to coral restoration. Several critical reef functions and processes are driven by fishes, thereby making their recovery and responses around restoration structures key indicators of success. This study evaluates fish abundance and community composition on restoration plots following 8–12 years of restoration activity, in four locations (two Caribbean and two Indo‐Pacific). Responses were very complex with region‐, site‐, and body size‐specific patterns. Overall, fish abundance only increased in Indo‐Pacific sites where damselfish responded positively to increased coral cover and topographic complexity. Restoration effects on other fish families and particularly on larger bodied reef fish were negative or neutral at all locations. If restoration initiatives are going to substantively improve the condition and recovery of degraded reef fish communities, restoration efforts need to be planned, designed, and monitored based on fish‐specific habitat requirements and locally specific community dynamics.  相似文献   

13.
Coral nursery and outplanting practices have grown in popularity worldwide for targeted restoration of degraded “high value” reef sites, and recovery of threatened taxa. Success of these practices is commonly gauged from coral propagule growth and survival, which fundamentally determines the return‐on‐effort (RRE) critical to the cost‐effectiveness and viability of restoration programs. In many cases, RRE has been optimized from past successes and failures, which therefore presents a major challenge for locations such as the Great Barrier Reef (GBR) where no local history of restoration exists to guide best practice. In establishing the first multi‐taxa coral nursery on the GBR (Opal Reef, February 2018), we constructed a novel scoring criterion from concurrent measurements of growth and survivorship to guide our relative RRE, including nursery propagule numbers (stock density). We initially retrieved RRE scores from a database of global restoration efforts to date (n = 246; 52 studies) to evaluate whether and how success commonly varied among coral taxa. We then retrieved RRE scores for Opal Reef using initial growth and survivorship data for six key coral taxa, to demonstrate that RRE scores were high for all taxa predominantly via high survivorship over winter. Repeated RRE scoring in summer is therefore needed to capture the full dynamic range of success where seasonal factors regulating growth versus survivorship differ. We discuss how RRE scoring can be easily adopted across restoration practices globally to standardize and benchmark success, but also as a tool to aid decision‐making in optimizing future propagation (and outplanting) efforts.  相似文献   

14.
In northern Chile, Pyura praeputialis is an invasive species inhabiting rocky intertidal and subtidal habitats restricted exclusively to the Bay of Antofagasta where it forms extensive aggregations. The negative impact of Pyura gathering on mid‐intertidal abundances of this species has recently been reported at the south‐eastern end of this bay. In the present study we have increased sampling sites to cover the entire bay toward the north‐western end and the northern section, where a coastal marine reserve for the scallop fishery partially restricts shellfish gathering. Therefore, the sampling sites were chosen to represent different levels of shellfish gathering access along the northern shore of the bay. Long‐term monitoring (1999–2014) of changes in tunicate cover and the abundances of larvae and recruits at seven sites are reported. The opening of a remodelled artificial and recreational beach in 2012, on the central‐eastern shore of the bay, has increased accessibility to rocky intertidal platforms that started to be massively visited by Pyura gatherers from the summer of 2013. This allowed for the implementation of an intensive short‐term monitoring program of changes in tunicate cover and the abundances of their larvae and recruits. When gathering access was present the reduction in intertidal cover was generalized to the entire bay and followed by reductions in larvae and recruits. However, these reductions were not found in sites with more restricted gathering access. We conclude that continuous extraction by Pyura gatherers followed by reductions of conspecific larvae and recruits are the main drivers behind the reduced abundance of P. praeputialis in the entire bay of Antofagasta. Thus, if gathering is not stopped important ecosystem services provided by this tunicate in the bay may be threatened. Similar consequences may be expected if other massive and irreversible reductions in other species of the Pyura complex, that inhabit other coasts in the southern hemisphere, occur. The controversy concerning the impacts of invasive species and whether they cause negative, positive or neutral impacts to original ecosystems and fisheries is discussed.  相似文献   

15.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   

16.
Human activities threaten reef ecosystems globally, forcing ecological change at rates and scales regarded as unprecedented in the Holocene. These changes are so profound that a cessation of reef accretion (reef ‘turn‐off’) and net erosion of reef structures is argued by many as the ultimate and imminent trajectory. Here, we use a regional scale reef growth dataset, based on 76 core records (constrained by 211 radiometric dates) from 22 reefs along and across the inner‐shelf of the Great Barrier Reef, Australia, to examine the timing of different phases of reef initiation (‘turn‐on’), growth and ‘turn‐off’ during the Holocene. This dataset delineates two temporally discrete episodes of reef‐building over the last 8500 years: the first associated with the Holocene transgression‐early highstand period [~8.5–5.5 k calibrated years bp (cal ybp )]; the second since ~2.3 k cal ybp . During both periods, reefs accreted rapidly to sea level before entering late evolutionary states – states naturally characterized by reduced coral cover and low accretion potential – and a clear hiatus occurs between these reef‐building episodes for which no records of reef initiation exist. These transitions mimic those projected under current environmental disturbance regimes, but have been driven entirely by natural forcing factors. Our results demonstrate that, even through the late Holocene, reef health and growth has fluctuated through cycles independent of anthropogenic forcing. Consequently, degraded reef states cannot de facto be considered to automatically reflect increased anthropogenic stress. Indeed, in many cases degraded or nonaccreting reef communities may reflect past reef growth histories (as dictated by reef growth–sea level interactions) as much as contemporary environmental change. Recognizing when changes in reef condition reflect these natural ‘turn‐on’– growth –‘turn‐off’ cycles and how they interact with on‐going human disturbance is critical for effective coral reef management and for understanding future reef ecological trajectories.  相似文献   

17.
18.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

19.
In the genome‐engineering era, it is increasingly important that researchers have access to a common set of platform strains that can serve as debugged production chassis and the basis for applying new metabolic engineering strategies for modeling and characterizing flux, engineering complex traits, and optimizing overall performance. Here, we describe such a platform strain of E. coli engineered for ethanol production. Starting with a fully characterized host strain (BW25113), we site‐specifically integrated the genes required for homoethanol production under the control of a strong inducible promoter into the genome and deleted the genes encoding four enzymes from competing pathways. This strain is capable of producing >30 g/L of ethanol in minimal media with <2 g/L produced of any fermentative byproduct. Using this platform strain, we tested previously identified ethanol tolerance genes and found that while tolerance was improved under certain conditions, any effect on ethanol production or tolerance was lost when grown under production conditions. Thus, our findings reinforce the need for a metabolic engineering “commons” that could provide a set of platform strains for use in more sophisticated genome‐engineering strategies. Towards this end, we have made this production strain available to the scientific community. Biotechnol. Bioeng. 2013; 110: 1520–1526. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Marine symbioses are integral to the persistence of ecosystem functioning in coral reefs. Solitary corals of the species Heteropsammia cochlea and Heterocyathus aequicostatus have been observed to live in symbiosis with the sipunculan worm Aspidosiphon muelleri muelleri, which inhabits a cavity within the coral, in Zanzibar (Tanzania). The symbiosis of these photosymbiotic corals enables the coral holobiont to move, in fine to coarse unconsolidated substrata, a process termed as “walking.” This allows the coral to escape sediment cover in turbid conditions which is crucial for these light‐dependent species. An additional commensalistic symbiosis of this coral‐worm holobiont is found between the Aspidosiphon worm and the cryptoendolithic bivalve Jousseaumiella sp., which resides within the cavity of the coral skeleton. To understand the morphological alterations caused by these symbioses, interspecific relationships, with respect to the carbonate structures between these three organisms, are documented using high‐resolution imaging techniques (scanning electron microscopy and µCT scanning). Documenting multi‐layered symbioses can shed light on how morphological plasticity interacts with environmental conditions to contribute to species persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号