首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The osteoarthritis (OA) progression is now considered to be related to inflammation. Anemonin (ANE) is a small natural molecule extracted from various kinds of Chinese traditional herbs and has been shown to inhibiting inflammation response. In this study, we examined whether ANE could attenuate the progression of OA via suppression of IL‐1β/NF‐κB pathway activation. Destabilization of the medial meniscus (DMM) was performed in 10‐week‐old male C57BL/6J mice. ANE was then intra‐articularly injected into joint capsule for 8 and 12 weeks. Human articular chondrocytes and cartilage explants challenged with interleukin‐1β (IL‐1β) were treated with ANE. We found that ANE delayed articular cartilage degeneration in vitro and in vivo. In particular, proteoglycan loss and chondrocyte hypertrophy were significantly decreased in ANE ‐treated mice compared with vehicle‐treated mice. ANE decreased the expressions of matrix metalloproteinase‐13 (MMP13), A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5), collagen X (Col X) while increasing Aggrecan level in murine with DMM surgery. ANE treatment also attenuated proteoglycan loss in human cartilage explants treated with IL‐1β ex vivo. ANE is a potent protective molecule for OA; it delays OA progression by suppressing ECM loss and chondrocyte hypertrophy partially by suppressing IL‐1β/NF‐κB pathway activation.  相似文献   

4.
5.
6.
Pneumonia is a chronic disorder of the respiratory system associated with worsening quality of life and a significant economic burden. Pinitol, a plant cyclic polyol, has been documented for immune‐inflammatory potential. The aim of present investigation was to evaluate the potential and possible mechanism of action of pinitol against lipopolysaccharide (LPS)‐induced pneumonia in the experimental animal model. Pneumonia was induced in Sprague‐Dawley rats by intratracheal administration of LPS (2 mg/kg). Animals were treated with either vehicle or dexamethasone or pinitol (5 or 10 or 20 mg/kg). Potential of pinitol against LPS‐induced pulmonary insult was assessed based on behavioral, biochemical, molecular, and ultrastructural studies. Intratracheal instillation of LPS induced significant (P < .05) inflammatory infiltration in bronchoalveolar lavage fluid (BALF) and lung tissue reflected by elevated pleural effusion volume, lung edema, BALF polymorphonuclear leukocytes count and lung myeloperoxidase levels, which was attenuated by pinitol (10 and 20 mg/kg) administration. Pinitol also markedly (P < .05) inhibited LPS‐induced alterations in electrocardiographic, hemodynamic changes, right ventricular, and lung function tests. The LPS‐induced downregulated nuclear factor erythroid 2–related factor 2 (Nrf‐2) and heme oxygenase‐1 (HO‐1), whereas upregulated transforming growth factor‐β (TGF‐β), tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, NOD‐, LRR‐, and pyrin domain‐containing protein 3 (NLRP3), and inducible nitric oxide synthase (iNOs) lung messenger RNA expressions were significantly (P < .05) inhibited by pinitol. Western blot analysis suggested pinitol markedly (P < .05) decreased nuclear factor‐κB (NF‐κB), inhibitor of nuclear factor κB (IkBα), toll‐like receptor 4 (TLR‐4), and cyclooxygenase‐II (COX‐II) protein expressions in the lung. These findings were further supported by histological and ultrastructural analyses of lung tissue that show pinitol significantly (P < .05) ameliorates LPS‐induced aberrations in lung tissue. In conclusion, pinitol attenuated LPS‐induced pneumonia via inhibition of TLR‐4 to downregulate the NF‐κB/IκBα signaling cascade and thus ameliorated the production of proinflammatory cytokines (TNF‐α, ILs, NLRP3, and TGF‐β), inflammatory mediators (COX‐II and iNOs) and elevated oxidative stress (Nrf‐2 and HO‐1).  相似文献   

7.
8.
9.
Pulmonary angiogenesis is essential for alveolarization, the final stage of lung development that markedly increases gas exchange surface area. We recently demonstrated that activation of the nuclear factor kappa‐B (NFκB) pathway promotes pulmonary angiogenesis during alveolarization. However, the mechanisms activating NFκB in the pulmonary endothelium, and its downstream targets are not known. In this study, we sought to delineate the specific roles for the NFκB activating kinases, IKKα and IKKβ, in promoting developmental pulmonary angiogenesis. Microarray analysis of primary pulmonary endothelial cells (PECs) after silencing IKKα or IKKβ demonstrated that the 2 kinases regulate unique panels of genes, with few shared targets. Although silencing IKKα induced mild impairments in angiogenic function, silencing IKKβ induced more severe angiogenic defects and decreased vascular cell adhesion molecule expression, an IKKβ regulated target essential for both PEC adhesion and migration. Taken together, these data show that IKKα and IKKβ regulate unique genes in PEC, resulting in differential effects on angiogenesis upon inhibition, and identify IKKβ as the predominant regulator of pulmonary angiogenesis during alveolarization. These data suggest that therapeutic strategies to specifically enhance IKKβ activity in the pulmonary endothelium may hold promise to enhance lung growth in diseases marked by altered alveolarization.  相似文献   

10.
11.
12.
13.
This study pointed to estimate the possible protective impacts of candesartan and/or epigallocatechin‐3‐gallate (EGCG) against gentamicin‐induced nephrotoxicity. The current work revealed that gentamicin significantly elevated relative kidney weight and the serum level of creatinine and urea. Also, renal level of malondialdehyde was significantly increased with a concurrent decrease in renal glutathione‐S‐transferase and superoxide dismutase activities. Moreover, renal levels of nuclear factor‐kappa B (NF‐κB) and p38 mitogen‐activated protein kinase (p38‐MAPK) were increased together with the elevation of tumor necrosis factor‐alpha and interleukin‐1 beta levels after gentamicin treatment. In addition, caspase‐3 expression was elevated, and histological examination revealed extreme alterations enlightening inflammation, degeneration, and necrosis. Pretreatments with candesartan and/or EGCG attenuated gentamicin‐induced nephrotoxicity. Importantly, the altered expression of p38‐MAPK and NF‐κB may play a significant role in the protective mechanisms exerted by candesartan and EGCG. Coadministration of candesartan and EGCG exhibited more profound response compared with the monotherapy.  相似文献   

14.
15.
16.
17.
Obesity is associated with significant microvascular complications including renal injuries and may induce end‐stage renal disease. Emerging studies have demonstrated microRNAs (miRNAs) are potential mediators in the pathophysiological process of nephropathy. The present study aimed to investigate the role of miR‐802 in obesity‐related nephropathy and potential molecular mechanisms. Through utilizing obese mouse model and human subjects, we explored the therapeutic benefits and clinical application of miR‐802 in protecting against nephropathy. Renal miR‐802 level was positively correlated with functional parameters, including blood urea nitrogen and creatinine in obese mice. Specific silencing of renal miR‐802 improved high fat diet (HFD)‐induced renal dysfunction, structural disorders and fibrosis. The up‐regulated inflammatory response and infiltrated macrophages were also significantly decreased in miR‐802 inhibitor‐treated obese mice. Mechanistically, miR‐802 directly bond to 3?‐UTR of NF‐κB‐repressing factor (NRF) and suppressed its expression. In clinical study, the circulating miR‐802 level was significantly increased in obese subjects, and positively correlated with plasma creatinine level but negatively correlated with creatinine clearance. Taken together, our findings provided evidence that miR‐802/NRF signalling was an important pathway in mediating obesity‐related nephropathy. It is a possible useful clinical approach of treating miR‐802 inhibitor to combat nephropathy.  相似文献   

18.
19.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

20.
The low‐grade, chronic inflammation initiated by TLR4‐triggered innate immune responses has a central role on early osteoarthritis. Amurensin H is a resveratrol dimer with anti‐inflammatory and anti‐apoptotic effects, while its effects on TLR‐4 signals to inhibit osteoarthritis are still unclear. In the present study, treatment with amurensin H for 2 weeks in monosodium iodoacetate‐induced mice significantly slows down cartilage degeneration and inflammation using macroscopic evaluation, haematoxylin and eosin (HE) staining and micro‐magnetic resonance imaging. In IL‐1β‐stimulated rat chondrocytes, amurensin H suppresses the production of inflammatory mediators including nitric oxide, IL‐6, IL‐17, PGE2 and TNF‐α using Greiss and ELISA assay. Amurensin H inhibits matrix degradation via decreasing levels of MMP‐9 and MMP‐13 using Western blot assay, promotes synthesis of type II collagen and glycosaminoglycan using immunostaining and safranin O staining, respectively. Amurensin H inhibits intracellular and mitochondrial reactive oxygen species (ROS) generation, and mitochondrial membrane depolarization using DCFH‐DA, MitoSOX Red and JC‐1 assay as well. IL‐1β stimulates TLR4 activation and Syk phosphorylation in chondrocytes, while amurensin H inhibits TLR4/Syk signals and downstream p65 phosphorylation and translocation in a time and dose‐dependent manner. Together, these results suggest that amurensin H exerts chondroprotective effects by attenuating oxidative stress, inflammation and matrix degradation via the TLR4/Syk/NF‐κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号