首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.  相似文献   

2.
Sphingosine‐1‐phosphate (S1P) is a signalling lipid that regulates many cellular processes in mammals. One well‐studied role of S1P signalling is to modulate T‐cell trafficking, which has a major impact on adaptive immunity. Compounds that target S1P signalling pathways are of interest for immune system modulation. Recent studies suggest that S1P signalling regulates many more cell types and processes than previously appreciated. This review will summarise current understanding of S1P signalling, focusing on recent novel findings in the roles of S1P receptors in innate immunity.  相似文献   

3.
Cumulating evidences suggested an important role of sphingosine‐1‐phosphate (S1P) and its receptors in regulating endothelial barrier integrity. Our previous study revealed that the circulating S1P levels and renal expression of S1PRs correlated with disease activity and renal damage in patients with antineutrophil cytoplasmic antibody (ANCA)‐associated vasculitis (AAV). This study investigated the role of S1P and its receptors in myeloperoxidase (MPO)‐ANCA‐positive IgG‐mediated glomerular endothelial cell (GEnC) activation. The effect of S1P on morphological alteration of GEnCs in the presence of MPO‐ANCA‐positive IgG was observed. Permeability assay was performed to determine endothelial monolayer activation in quantity. Both membrane‐bound and soluble ICAM‐1 and VCAM‐1 levels were measured. Furthermore, antagonists and/or agonists of various S1PRs were employed to determine the role of different S1PRs. S1P enhanced MPO‐ANCA‐positive IgG‐induced disruption of tight junction and disorganization of cytoskeleton in GEnCs. S1P induced further increase in monolayer permeability of GEnC monolayers in the presence of MPO‐ANCA‐positive IgG. S1P enhanced MPO‐ANCA‐positive IgG‐induced membrane‐bound and soluble ICAM‐1/VCAM‐1 up‐regulation of GEnCs. Soluble ICAM‐1 levels in the supernatants of GEnCs stimulated by S1P and MPO‐ANCA‐positive IgG increased upon pre‐incubation of S1PR1 antagonist, while pre‐incubation of GEnCs with the S1PR1 agonist down‐regulated sICAM‐1 level. Blocking S1PR2‐4 reduced sICAM‐1 levels in the supernatants of GEnCs stimulated by S1P and MPO‐ANCA‐positive IgG. Pre‐incubation with S1PR5 agonist could increase sICAM‐1 level in the supernatants of GEnC stimulated by S1P and MPO‐ANCA‐positive IgG. S1P can enhance MPO‐ANCA‐positive IgG‐mediated GEnC activation through S1PR2‐5.  相似文献   

4.
Mutations in the presenilin‐1 (PS1) gene are independent causes of familial Alzheimer's disease (AD). AD patients have dysregulated immunity, and PS1 mutant mice exhibit abnormal systemic immune responses. To test whether immune function abnormality caused by a mutant human PS1 gene (mhPS1) could modify AD‐like pathology, we reconstituted immune systems of AD model mice carrying a mutant human amyloid precursor protein gene (mhAPP; Tg2576 mice) or both mhAPP and mhPS1 genes (PSAPP mice) with allo‐geneic bone marrow cells. Here, we report a marked reduction in amyloid‐β (Aβ) levels, β‐amyloid plaques and brain inflammatory responses in PSAPP mice following strain‐matched wild‐type PS1 bone marrow reconstitution. These effects occurred with immune switching from pro‐inflammatory T helper (Th) 1 to anti‐inflammatory Th2 immune responses in the periphery and in the brain, which likely instructed microglia to phagocytose and clear Aβ in an ex vivo assay. Conversely, Tg2576 mice displayed accelerated AD‐like pathology when reconstituted with mhPS1 bone marrow. These data show that haematopoietic cells bearing the mhPS1 transgene exacerbate AD‐like pathology, suggesting a novel therapeutic strategy for AD based on targeting PS1 in peripheral immune cells.  相似文献   

5.
Sphingosine-1-phosphate (S1P) is lipid messenger involved in the regulation of embryonic development, immune system functions, and many other physiological processes. However, the mechanisms of S1P transport across cellular membranes remain poorly understood, with several ATP-binding cassette family members and the spinster 2 (Spns2) member of the major facilitator superfamily known to mediate S1P transport in cell culture. Spns2 was also shown to control S1P activities in zebrafish in vivo and to play a critical role in zebrafish cardiovascular development. However, the in vivo roles of Spns2 in mammals and its involvement in the different S1P-dependent physiological processes have not been investigated. In this study, we characterized Spns2-null mouse line carrying the Spns2(tm1a(KOMP)Wtsi) allele (Spns2(tm1a)). The Spns2(tm1a/tm1a) animals were viable, indicating a divergence in Spns2 function from its zebrafish ortholog. However, the immunological phenotype of the Spns2(tm1a/tm1a) mice closely mimicked the phenotypes of partial S1P deficiency and impaired S1P-dependent lymphocyte trafficking, with a depletion of lymphocytes in circulation, an increase in mature single-positive T cells in the thymus, and a selective reduction in mature B cells in the spleen and bone marrow. Spns2 activity in the nonhematopoietic cells was critical for normal lymphocyte development and localization. Overall, Spns2(tm1a/tm1a) resulted in impaired humoral immune responses to immunization. This study thus demonstrated a physiological role for Spns2 in mammalian immune system functions but not in cardiovascular development. Other components of the S1P signaling network are investigated as drug targets for immunosuppressive therapy, but the selective action of Spns2 may present an advantage in this regard.  相似文献   

6.
The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene‐induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site‐specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF‐receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus‐selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock‐in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN‐β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1‐mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.  相似文献   

7.
Sphingosine 1-phosphate (S1P) is a biologically active lysophospholipid that transmits signals through a family of G-protein-coupled receptors to control cellular differentiation and survival, as well as the vital functions of several types of immune cell. In this Review article, we discuss recent results that indicate that S1P and its receptors are required for the emigration of thymocytes from the thymus, the trafficking of lymphocytes in secondary lymphoid organs and the migration of B cells into splenic follicles. In an autocrine manner, through interactions with different G-protein-coupled receptors, S1P also enhances optimal mast-cell migration and release of pro-inflammatory mediators in allergic reactions. S1P-S1P-receptor regulatory systems might therefore be novel targets for the therapy of diverse immunological diseases.  相似文献   

8.
Although originally described as an intracellular second messenger, sphingosine 1-phosphate (S1P) has recently been shown to be involved in several physiological and pathological functions as an extracellular mediator. S1P receptors are widely expressed and thought to regulate important functions in cell signalling. Recently, the role of S1P on the immune system has evoked great interest. In particular, several aspects of the effects on antigen-presenting cells (APCs) as dendritic cells (DC) in mice and humans have been reported. In this review, we focus on the role played by S1P on the DC system and its effects in immune-related pathological states.  相似文献   

9.
Although originally described as an intracellular second messenger, sphingosine 1-phosphate (S1P) has recently been shown to be involved in several physiological and pathological functions as an extracellular mediator. S1P receptors are widely expressed and thought to regulate important functions in cell signalling. Recently, the role of S1P on the immune system has evoked great interest. In particular, several aspects of the effects on antigen-presenting cells (APCs) as dendritic cells (DC) in mice and humans have been reported. In this review, we focus on the role played by S1P on the DC system and its effects in immune-related pathological states.  相似文献   

10.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

11.
鞘氨醇-1-磷酸(sphingosine-1 phosphate,S1P)是来源于鞘脂代谢途径的多效性信号分子,其代谢受到多种因素调控。S1P由细胞内的鞘氨醇激酶(sphingosine kinases,SphKs)催化鞘氨醇的磷酸化而合成,可通过转运蛋白释放至细胞外。S1P可通过在胞外结合其特异性G蛋白偶联受体及胞内作用而调节多种重要生物学效应。作为细胞外介质和细胞内信使,S1P在免疫系统中也发挥重要的调节作用。S1P参与免疫细胞的迁移、增殖、分化及死亡细胞清除等过程。本文对S1P的代谢以及其对于免疫细胞的调节作用进行综述。  相似文献   

12.
13.
14.
Coronary artery disease (CAD) is a common cause of morbidity and mortality worldwide. Atherosclerotic plaques, as a hallmark of CAD, cause chronic narrowing of coronary arteries over time and could also result in acute myocardial infarction (AMI). The standard treatments for ameliorating AMI are reperfusion strategies, which paradoxically result in ischemic reperfusion (I/R) injury. Sphingosine 1 phosphate (S1P), as a potent lysophospholipid, plays an important role in various organs, including immune and cardiovascular systems. In addition, high-density lipoprotein, as a negative predictor of atherosclerosis and CAD, is a major carrier of S1P in blood circulation. S1P mediates its effects through binding to specific G protein-coupled receptors, and its signaling contributes to a variety of responses, including cardiac inflammation, dysfunction, and I/R injury protection. In this review, we will focus on the role of S1P in CAD and I/R injury as a potential therapeutic target.  相似文献   

15.
The bioactive lipid sphingosine‐1‐phosphate (S1P) regulates smooth muscle (SM) contractility predominantly via three G protein‐coupled receptors. The S1P1 receptor is associated with nitric oxide (NO)‐mediated SM relaxation, while S1P2 & S1P3 receptors are linked to SM contraction via activation of the Rho‐kinase pathway. This study is to determine testosterone (T) modulating the expression and functional activity of S1P receptors in corpus cavernosum (CC). Adult male Sprague‐Dawley rats were randomly divided into three groups: sham‐operated controls, surgical castration and T supplemented group. Serum S1P levels were detected by high‐performance liquid chromatography. The expression of S1P1‐3 receptors and sphingosine kinases was detected by real‐time RT‐PCR. In vitro organ bath contractility and in vivo intracavernous pressure (ICP) measurement were also performed. T deprivation significantly decreased ICP rise. Meanwhile, surgical castration induced a significant increase in serum S1P level and the expression of S1P2‐3 receptors by twofold (< 0.05) but a decrease in the expression of S1P1 receptor. Castration also augmented exogenous phenylephrine (PE), S1P, S1P1,3 receptor agonist FTY720‐P contractility and S1P2‐specific antagonist JTE013 relaxation effect. T supplemented could restore the aforementioned changes. We provide novel data that castration increased serum S1P concentration and up‐regulated the expression of S1P2‐3 receptors in CC. Consistently, agonizing S1P receptors induced CCSM contraction and antagonizing mediated relaxation were augmented. This provides the first clear evidence that S1P system dysregulation may contribute to hypogonadism‐related erectile dysfunction (ED), and S1P receptors may be expected as a potential target for treating ED.  相似文献   

16.
The outs and the ins of sphingosine-1-phosphate in immunity   总被引:1,自引:0,他引:1  
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.  相似文献   

17.
Phytosphingosine‐1‐phosphate (P1P) is a signaling sphingolipid that regulates various physiological activities. However, little is known about the effect of P1P in the context of reproduction. Thus, we aimed to investigate the influence of P1P on oocyte maturation during porcine in vitro maturation (IVM). Here, we report the expression of S1PR1–3 among P1P receptors (S1PR1–4) in cumulus cells and oocytes. When P1P was administered at concentrations of 10, 50, 100, and 1,000 nM during IVM, the metaphase II rate was significantly increased in the 1,000 nM (1 μM) P1P treatment group. Maturation rate improvement by P1P supplementation was observed only in the presence of epidermal growth factor (EGF). Oocytes under the influence of P1P showed decreased intracellular reactive oxygen species levels but no significant differences in glutathione levels. In our molecular studies, P1P treatment upregulated gene expression involved in cumulus expansion (Has2 and EGF), antioxidant enzymes (SOD3 and Cat), and developmental competence (Oct4) while activating extracellular signal‐regulated kinase1/2 and Akt signaling. P1P treatment also influenced oocyte survival by shifting the ratio of Bcl‐2 to Bax while inactivating JNK signaling. We further demonstrated that oocytes matured with P1P displayed significantly higher developmental competence (cleavage and blastocyst [BL] formation rate) and greater BL quality (total cell number and the ratio of apoptotic cells) when activated via parthenogenetic activation (PA) and in vitro fertilization. Despite the low levels of endogenous P1P found in animals, exogenous P1P influenced animal reproduction, as shown by increased porcine oocyte maturation as well as preimplantation embryo development. This study and its findings are potentially relevant for both human and animal‐assisted reproduction.  相似文献   

18.
Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin–myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between β‐actin and the SH2‐domain‐containing protein tyrosine phosphatase‐1 (SHP‐1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP‐1 in additional cellular systems.  相似文献   

19.
The immune inflammatory response plays a crucial role in many cardiac pathophysiological processes, including ischaemic cardiac injury and the post‐infarction repair process. MicroRNAs (miRNAs) regulate the development and function of dendritic cells (DCs), which are key players in the initiation and regulation of immune responses; however, the underlying regulatory mechanisms remain unclear. Here, we used the supernatants of necrotic primary cardiomyocytes (Necrotic‐S) to mimic the myocardial infarction (MI) microenvironment to investigate the role of miRNAs in the regulation of DC‐mediated inflammatory responses. Our results showed that Necrotic‐S up‐regulated the DC maturation markers CD40, CD83 and CD86 and increased the production of inflammatory cytokines, concomitant with the up‐regulation of miR‐181a and down‐regulation of miR‐150. Necrotic‐S stimulation activated the JAK/STAT pathway and promoted the nuclear translocation of c‐Fos and NF‐κB p65, and silencing of STAT1 or c‐Fos suppressed Necrotic‐S‐induced DC maturation and inflammatory cytokine production. The effects of Necrotic‐S on DC maturation and inflammatory responses, its activation of the JAK/STAT pathway and the induction of cardiomyocyte apoptosis under conditions of hypoxia were suppressed by miR‐181a or miR‐150 overexpression. Taken together, these data indicate that miR‐181a and miR‐150 attenuate DC immune inflammatory responses via JAK1–STAT1/c‐Fos signalling and protect cardiomyocytes from cell death under conditions of hypoxia.  相似文献   

20.
Central (hypothalamic) control of bone mass is proposed to be mediated through β2‐adrenergic receptors (β2‐ARs). While investigations in mouse bone cells suggest that epinephrine enhances both RANKL and OPG mRNA via both β‐ARs and α‐ARs, whether α‐ARs are expressed in human bone cells is controversial. The current study investigated the expression of α1‐AR and β2‐AR mRNA and protein and the functional role of adrenergic stimulation in human osteoblasts (HOBs). Expression of α1B‐ and β2‐ARs was examined by RT‐PCR, immunofluorescence microscopy and Western blot (for α1B‐ARs). Proliferation in HOBs was assessed by 3H‐thymidine incorporation and expression of RANKL and OPG was determined by quantitative RT‐PCR. RNA message for α1B‐ and β2‐ARs was expressed in HOBs and MG63 human osteosarcoma cells. α1B‐ and β2‐AR immunofluorescent localization in HOBs was shown for the first time by deconvolution microscopy. α1B‐AR protein was identified in HOBs by Western blot. Both α1‐agonists and propranolol (β‐blocker) increased HOB replication but fenoterol, a β2‐agonist, inhibited it. Fenoterol nearly doubled RANKL mRNA and this was inhibited by propranolol. The α1‐agonist cirazoline increased OPG mRNA and this increase was abolished by siRNA knockdown of α1B‐ARs in HOBs. These data indicate that both α1‐ARs and β2‐ARs are present and functional in HOBs. In addition to β2‐ARs, α1‐ARs in human bone cells may play a role in modulation of bone turnover by the sympathetic nervous system. J. Cell. Physiol. 220: 267–275, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号