首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

2.
The ATP synthase of Propionigenium modestum encloses a rotary motor involved in the production of ATP from ADP and inorganic phosphate utilizing the free energy of an electrochemical Na(+) ion gradient. This enzyme clearly belongs to the family of F(1)F(0) ATP synthases and uses exclusively Na(+) ions as the physiological coupling ion. The motor domain, F(0), comprises subunit a and the b subunit dimer which are part of the stator and the subunit c oligomer acting as part of the rotor. During ATP synthesis, Na(+) translocation through F(0) proceeds from the periplasm via the stator channel (subunit a) onto a Na(+) binding site of the rotor (subunit c). Upon rotation of the subunit c oligomer versus subunit a, the occupied rotor site leaves the interface with the stator and the Na(+) ion can freely dissociate into the cytoplasm. Recent experiments demonstrate that the membrane potential is crucial for ATP synthesis under physiological conditions. These findings support the view that voltage generates torque in F(0), which drives the rotation of the gamma subunit thus liberating tightly bound ATP from the catalytic sites in F(1). We suggest a mechanochemical model for the transduction of transmembrane Na(+)-motive force into rotary torque by the F(0) motor that can account quantitatively for the experimental data.  相似文献   

3.
Functional compatibility between the F1 and F0 parts of ATP synthases from Escherichia coli (EF1F0) and the thermophilic bacterium PS3 (TF1F0) was analyzed. F1-stripped everted membrane vesicles from both organisms bound the homologous or heterologous F1 part to the same extent. Titration of the reconstituted membrane vesicles with dicyclohexylcarbodiimide revealed a similar sensitivity of the homologous and hybrid F1F0 complexes towards the inhibitor. Furthermore, the heterologous enzymes exhibited ATP-dependent H+ translocation comparable to that of homologous F1F0. Antisera raised against EF1 or subunits a, b, and c of EF0 were analyzed for cross-reactivity with TF1 and TF0. Common antigenic sites have been detected with immunoblot analysis for subunit beta and subunit c of EF1F0 and the corresponding subunits from TF1F0. A weak binding of the anti-a and anti-b antisera with the TF0 part has been observed in an enzyme-linked immunosorbent assay. Based on these findings the structural and functional relationship between the mesophilic and thermophilic ATP synthase complexes is discussed.  相似文献   

4.
YidC is a member of the OxaI family of membrane proteins that has been implicated in the membrane insertion of inner membrane proteins in Escherichia coli. We have recently demonstrated that proteoliposomes containing only YidC support both the stable membrane insertion and the oligomerization of the c subunit of the F(1)F(0) ATP synthase (F(0)c). Here we have shown that two mutants of F(0)c unable to form a functional F(1)F(0) ATPase interact with YidC, require YidC for membrane insertion, but fail to oligomerize. These data show that oligomerization is not essential for the stable YidC-dependent membrane insertion of F(0)c consistent with a function of YidC as a membrane protein insertase.  相似文献   

5.
YidC is a member of the Oxa1 family of proteins that facilitates the membrane insertion of a subset of inner membrane proteins in Escherichia coli. YidC acts as an insertase for membrane insertion of subunit c of the F(1)F(0) ATP synthase (F(0)c), but the requirements for substrate recognition have remained unclear. Here, we have analyzed the role of the charged aminoacyl residues in F(0)c in YidC targeting and membrane insertion. Binding experiments demonstrate that F(0)c is targeted directly to YidC without the presence of a stable lipid surface-bound intermediate. Positive charges in the cytoplasmic loop of F(0)c are important determinants for YidC binding and subsequent membrane insertion. These data support a model in which F(0)c binds directly to YidC prior to its membrane insertion.  相似文献   

6.
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function.  相似文献   

7.
The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now demonstrate that the insertion of in vitro-synthesized F1F0 ATP synthase subunit c (F0c) into inner membrane vesicles requires YidC. Insertion is independent of the proton motive force, and proteoliposomes containing only YidC catalyze the membrane insertion of F0c in its native transmembrane topology whereupon it assembles into large oligomers. Co-reconstituted SecYEG has no significant effect on the insertion efficiency. Remarkably, signal recognition particle and its membrane-bound receptor FtsY are not required for the membrane insertion of F0c. In conclusion, a novel membrane protein insertion pathway in E. coli is described in which YidC plays an exclusive role.  相似文献   

8.
The membrane energetics of the intestinal pathogen Vibrio cholerae involves both H(+) and Na(+) as coupling ions. The sequence of the c subunit of V. cholerae F(0)F(1) ATPase suggested that this enzyme is H(+) specific, in contrast to the results of previous studies on the Na(+)-dependent ATP synthesis in closely related Vibrio spp. Measurements of the pH gradient and membrane potential in membrane vesicles isolated from wild-type and DeltaatpE mutant V. cholerae show that the F(1)F(0) ATPase of V. cholerae is an H(+), not Na(+), pump, confirming the bioinformatics assignments that were based on the Na(+)-binding model of S. Rahlfs and V. Müller (FEBS Lett. 404:269-271, 1999). Application of this model to the AtpE sequences from other bacteria and archaea indicates that Na(+)-specific F(1)F(0) ATPases are present in a number of important bacterial pathogens.  相似文献   

9.
Dicyclohexylcarbodiimide (DCCD) specifically inhibits the F1F0-H+-ATP synthase complex of Escherichia coli by covalently modifying a proteolipid subunit that is embedded in the membrane. Multiple copies of the DCCD-reactive protein, also known as subunit c, are found in the F1F0 complex. In order to determine the minimum stoichiometry of reaction, we have treated E. coli membranes with DCCD, at varying concentrations and for varying times, and correlated inhibition of ATPase activity with the degree of modification of subunit c. Subunit c was purified from the membrane, and the degree of modification was determined by two methods. In the "specific radioactivity" method, the moles of [14C]DCCD per total mole of subunit c was calculated from the radioactivity incorporated per mg of protein, and conversion of mg of protein to mol of protein based upon amino acid analysis. In the "high performance liquid chromatography (HPLC) peak area" method, the DCCD-modified subunit c was separated from unmodified subunit c on an anion exchange AX300 HPLC column, and the areas of the peaks from the chromatogram quantitated. The shape of the modification versus inhibition curve indicated that modification of a single subunit c per F0 was sufficient to abolish ATPase activity. The titration data were fit by nonlinear regression analysis to a single hit mathematical model, A = Un(1 - r) + r, where A is the relative activity, U is the ratio of unmodified/total subunit c, n is the number of subunit c per F0, and r is a residual fraction of ATPase activity that was resistant to inhibition by DCCD. The two methods gave values for n equal to 10 by the specific radioactivity method and 14 by the HPLC peak area method, and values for r of 0.28 and 0.30, respectively. Most of the r value was accounted for by the observed dissociation of 15-20% of the F1-ATPase from the membrane under ATPase assay conditions. When the minimal, experimentally justified value of r = 0.15 was used in the equation above, the calculated values of n were reduced to 8 and 11, respectively. The value of n determined here, with a probable range of uncertainty of 8-14, is consistent with, and provides an independent type of experimental support for, the suggested stoichiometry of 10 +/- 1 subunit c per F1F0, which was determined by a more precise radiolabeling method (Foster, D. L., and Fillingame, R. H. (1982) J. Biol. Chem. 257, 2009-2015).  相似文献   

10.
Subunit c of the proton-transporting ATP synthase of Escherichia coli forms an oligomeric complex in the membrane domain that functions in transmembrane proton conduction. The arrangement of subunit c monomers in this oligomeric complex was studied by scanning mutagenesis. On the basis of these studies and structural information on subunit c, different molecular models for the potential arrangement of monomers in the c-oligomer are discussed. Intersubunit contacts in the F(0) domain that have been analysed in the past by chemical modification and mutagenesis studies are summarised. Transient contacts of the c-oligomer with subunit a might play a crucial role in the mechanism of proton translocation. Schematic models presented by several authors that interpret proton transport in the F(0) domain by a relative rotation of the c-subunit oligomer against subunit a are reviewed against the background of the molecular models of the oligomer.  相似文献   

11.
F(1)F(0)-motor (ATP synthase) is the universal enzyme in biological energy conversion that is present in the membranes of mitochondria, chloroplasts and bacteria. It uses the energy of the proton gradient across the membrane to synthesize ATP. Previous theory and model about rotation of the ATP synthase is reviewed, then a novel chemo-mechanical coupled model for rotation of the F(1)F(0)-motor is proposed. In the model, more events are considered simultaneously that includes the movement of F(1), the movement of F(0), reactions at F(1) and reactions at F(0). Using the model, the possible substep modes of the rotation for F(1)F(0) are predicted, the dependence of the motor efficiency and its rotation rate on the rigidity of the γ shaft is investigated. We conclude that the γ shaft has a large rotation rate for a limited driving potential because two ends of the γ shaft can rotate alternately for its flexibility. The flexibility also makes the efficiency of F(1)F(0) drop because elastic twisting deformation power is needed during alternate rotation of the γ shaft at two ends.  相似文献   

12.
The Na(+) F(1)F(0) ATP synthase operon of the anaerobic, acetogenic bacterium Acetobacterium woodii is unique because it encodes two types of c subunits, two identical 8 kDa bacterial F(0)-like c subunits (c(2) and c(3)), with two transmembrane helices, and a 18 kDa eukaryal V(0)-like (c(1)) c subunit, with four transmembrane helices but only one binding site. To determine whether both types of rotor subunits are present in the same c ring, we have isolated and studied the composition of the c ring. High-resolution atomic force microscopy of 2D crystals revealed 11 domains, each corresponding to two transmembrane helices. A projection map derived from electron micrographs, calculated to 5 A resolution, revealed that each c ring contains two concentric, slightly staggered, packed rings, each composed of 11 densities, representing 22 transmembrane helices. The inner and outer diameters of the rings, measured at the density borders, are approximately 17 and 50 A. Mass determination by laser-induced liquid beam ion desorption provided evidence that the c rings contain both types of c subunits. The stoichiometry for c(2)/c(3) : c(1) was 9 : 1. Furthermore, this stoichiometry was independent of the carbon source of the growth medium. These analyses clearly demonstrate, for the first time, an F(0)-V(0) hybrid motor in an ATP synthase.  相似文献   

13.
The F(1)F(0) ATP synthase is a reversible molecular motor that employs a rotary catalytic cycle to couple a chemiosmotic membrane potential to the formation/hydrolysis of ATP. The multisubunit enzyme contains two copies of the b subunit that form a homodimer as part of a narrow, peripheral stalk structure that connects the membrane (F(0)) and soluble (F(1)) sectors. The three-dimensional structure of the b subunit is unknown making the nature of any interactions or conformational changes within the F(1)F(0) complex difficult to interpret. We have used circular dichroism and analytical ultracentrifugation analyses of a series of N- and C-terminal truncated b proteins to investigate its stability and structure. Thermal denaturation of the b constructs exhibited distinct two-state, cooperative unfolding with T(m) values between 30 and 40 degrees C. CD spectra for the region comprising residues 53-122 (b(53-122)) showed theta;(222)/theta;(208) = 0.99, which reduced to 0.92 in the presence of the hydrophobic solvent trifluoroethanol. Thermodynamic parameters for b(53-122) (DeltaG, DeltaH and DeltaC(p)) were similar to those reported for several nonideal, coiled-coil proteins. Together these results are most consistent with a noncanonical and unstable parallel coiled-coil at the interface of the b dimer.  相似文献   

14.
15.
Subunit c of ATP synthase can be purified from neuronal plasma membrane and from the inner mitochondrial membrane. In the latter location the hydrophobic 75 amino acid protein is one component of the F(1) F(0) ATP synthase complex but in the former it is alone as a pore that is capable of generating spontaneous electrical oscillations. Pure mammalian subunit c when reconstituted in lipid bilayers and voltage clamped, yields a voltage sensitive pore that conducts a cation current regulated by calcium. The current is here found to be activated by cGMP with a K(M) ranging from 14 nM to 19 microM depending on calcium and temperature. It is sensitively inhibited by a number of ligands. The K(I) for calcium ranges from 100 nM to 100 microM depending on cGMP and temperature. DCCD inhibits with a K(app) of 100 nM. The polyamine nicotine inhibits at 84 nM. The pore has properties that would allow it to deliver sodium or calcium through the cell membrane in a controlled manner while maintaining membrane polarization.  相似文献   

16.
Mechanism of the F(1)F(0)-type ATP synthase, a biological rotary motor   总被引:3,自引:0,他引:3  
The F(1)F(0)-type ATP synthase is a key enzyme in cellular energy interconversion. During ATP synthesis, this large protein complex uses a proton gradient and the associated membrane potential to synthesize ATP. It can also reverse and hydrolyze ATP to generate a proton gradient. The structure of this enzyme in different functional forms is now being rapidly elucidated. The emerging consensus is that the enzyme is constructed as two rotary motors, one in the F(1) part that links catalytic site events with movements of an internal rotor, and the other in the F(0) part, linking proton translocation to movements of this F(0) rotor. Although both motors can work separately, they must be connected together to interconvert energy. Evidence for the function of the rotary motor, from structural, genetic and biophysical studies, is reviewed here, and some uncertainties and remaining mysteries of the enzyme mechanism are also discussed.  相似文献   

17.
A 3.5-kDa polypeptide associated with the inner membrane of rat liver was found to be phosphorylated by [gamma-(32)P]ATP, presumably via a cAMP-dependent kinase. The phosphorylation was modulated by [Ca(2+)] in the physiological range, with a minimum at 1 microM and rising fourfold toward lower (10 nM) and higher (10 microM) concentrations. Further characterization of the 3.5-kDa component showed that the polypeptide has the same electrophoretic mobility as subunit c of F(0)F(1)-ATPase and that it selectively binds to antibodies against subunit c.  相似文献   

18.
The F1F0-ATP synthase in mitochondria, in addition to its function in energy transduction, has a structural role in determining cristae morphology. This depends on its ability to form dimeric and higher oligomeric supracomplexes. Here we show that mutants of the dimer-specific subunits e and g, which destabilize dimeric and oligomeric F1F0-ATP synthase supracomplexes, have a decreased mitochondrial membrane potential delta psi. The degree of destabilization correlated with the reduction of the membrane potential. The enzymatic activities of F1F0-ATP synthase and cytochrome c oxidase, maximal respiration rate, coupling of oxidative phosphorylation, and tubular mitochondrial morphology were not affected or only to a minor extent. In mutants lacking one or two coiled-coil domains of subunit e, the reduction of the mitochondrial membrane potential was not due to loss of mitochondrial DNA, a reduced capacity of oxidative phosphorylation, or to altered cristae morphology. We propose a role for the supracomplexes of the F1F0-ATP synthase in organizing microdomains within the inner membrane, ensuring optimal bioenergetic competence of mitochondria.  相似文献   

19.
The membrane-spanning F0 sector of the Escherichia coli H+-transporting ATP synthase (EC 3.6.1.34) contains multiple copies of subunit c, a 79 amino acid residue protein that is thought to insert in the membrane like a hairpin with two membrane traversing alpha-helices. The center of the protein is much more polar than the putative transmembrane alpha-helices and has been postulated to play a crucial role in coupling H+ translocation through F0 to ATP synthesis in the membrane extrinsic, F1 sector of the complex. However, the direction of insertion of subunit c in the membrane has not been established. We show here that the "polar loop" lies on the F1 binding side of the membrane. A peptide corresponding to Lys34----Ile46 of the polar loop was synthesized. Antisera were generated to the Lys34----Ile46 cognate peptide, and the polyclonal antipeptide IgG was shown to bind to a crude F0 fraction by using enzyme-linked immunosorbent assays. The antipeptide serum did not bind tightly enough to F0 to disrupt function. However, a polyclonal antiserum made to purified, whole subunit c was shown to block the binding of F1 to the F0 exposed in F1-stripped membranes. Incubation of the antisubunit c serum with the peptide reduced the inhibitory effect of the antiserum on the binding of F1 to F0. The reversal of inhibition by the peptide was specific to the antisubunit c serum in that the peptide had no effect on inhibition of F1 binding to F0 by antiserum to subunit a of F0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The binding site of the delta subunit in the F(1)F(0)-ATPsynthase from Escherichia coli has been determined by electron microscopy of negatively stained, antibody-decorated enzyme molecules. The images show that the antibody is bound at the very top of the F(1) domain indicating that at least part of delta is bound in the dimple formed by the N termini of the alpha and beta subunits. The data may explain why there is only one binding site for delta on the F(1) despite there being three identical alphabeta pairs. The finding also implies that the b subunits of the F(0) have to extend all the way from the membrane surface to the very top of the F(1) domain to make contact with the delta subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号