首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

2.
The actin filaments of myofibrils are highly organized; they are of a uniform length and polarity and are situated in the sarcomere in an aligned array. We hypothesized that the barbed-end actin-binding protein, CapZ, directs the process of actin filament assembly during myofibrillogenesis. We tested this hypothesis by inhibiting the actin- binding activity of CapZ in developing myotubes in culture using two different methods. First, injection of a monoclonal antibody that prevents the interaction of CapZ and actin disrupts the non-striated bundles of actin filaments formed during the early stages of myofibril formation in skeletal myotubes in culture. The antibody, when injected at concentrations lower than that required for disrupting the actin filaments, binds at nascent Z-disks. Since the interaction of CapZ and the monoclonal antibody are mutually exclusive, this result indicates that CapZ binds nascent Z-disks independent of an interaction with actin filaments. In a second approach, expression in myotubes of a mutant form of CapZ that does not bind actin results in a delay in the appearance of actin in a striated pattern in myofibrils. The organization of alpha-actinin at Z-disks also is delayed, but the organization of titin and myosin in sarcomeres is not significantly altered. We conclude that the interaction of CapZ and actin is important for the organization of actin filaments of the sarcomere.  相似文献   

3.
In order to evaluate the effects of specific mutations on sarcomere assembly and function in vivo, we describe the course of normal development of Drosophila indirect flight muscle (IFM) in staged pupae using electron microscopy. We find that no contractile assemblies remain in larval muscle remnants invaded by imaginal myoblasts, establishing that myofibrils in IFM assemble de novo. Stress-fiber-like structures or other template structures are not prominent before or during sarcomere assembly. By 42 hr pupation (eclosion 112 hr), thick and thin filaments have appeared simultaneously in slender, interdigitated arrays between regularly spaced Z-bodies. Each tiny, uniformly striated myofibril forms within a "sleeve" of microtubules, and both microtubules and myofibrils are attached to the cell membrane at each end of the fiber from the initial stages of assembly. Later in pupation, the microtubule "sleeves" disassemble. Sarcomere number appears to remain constant. We saw no evidence that terminal sarcomeres are sites for addition of new sarcomeres or that Z-lines split transversely, producing new, very short sarcomeres. Rather, initial thick and thin filaments and sarcomeres are much shorter than adult length. Sarcomere length increases smoothly and coordinately from 1.7 to 3.2 μm, reflecting increase in filament lengths and indicating that myosin and actin molecules must be incorporated into filaments after sarcomere formation. Myofilaments are not seen scattered in the cytoplasm at any time, nor do we detect filaments that could be in the process of being "trolleyed" along myofibrils into positions of lateral register. Myofibril diameter increases uniformly from 4-thick filaments to 36-thick filaments across, by peripheral addition of myofilaments. At each successive stage, all sarcomeres in a fiber attained similar length and diameter. Initial thick filaments are solid but within several hours these and all subsequently assembled thick filaments appear hollow. Initial Z-bodies do not show any internal lattice and are more irregularly shaped than adult Z-discs.  相似文献   

4.
Obscurin regulates the organization of myosin into A bands   总被引:8,自引:0,他引:8  
Obscurin is a giant sarcomeric protein composed of adhesion modules and signaling domains. It surrounds myofibrils at the level of the Z disk and the M line. To study the role of obscurin during myofibrillogenesis, we used adenovirus-mediated gene delivery to overexpress part of its COOH terminus in primary cultures of postnatal day 1 (P1) skeletal myotubes. Examination of the subcellular distribution of a number of sarcomeric proteins revealed that the organization of myosin into A bands was dramatically reduced. Myosin assembled into A bands normally in mock- or control-infected P1 myotubes. Overexpression of the COOH terminus of obscurin did not affect the organization of other sarcomeric markers, including actin, -actinin, titin, and myomesin. Assembly of myomesin into nascent M lines in treated myotubes suggests that these structures can form independently of A bands. Immunoblot analysis indicated that there was a small (20%) but consistent decrease in the amount of myosin expressed in cells infected with the COOH terminus of obscurin. Coimmunoprecipitation experiments in which we used adult skeletal muscle homogenates demonstrated that obscurin exists in a complex with myosin. Thus our findings suggest that the COOH-terminal region of obscurin interacts with sarcomeric myosin and may play a critical role in its ability to assemble into A bands in striated muscle. titin; myofibrillogenesis; sarcomere; M line; muscle  相似文献   

5.
The distribution of titin during myofibrillogenesis was examined using rat skeletal muscle myogenic cultures and fluorescent-antibody staining. Efforts were made to compare the distribution and temporal sequence of incorporation of titin relative to that of the alpha- and gamma-isoforms of actin. The present observations suggested the following sequence of titin assembly: (1) newly synthesized titin molecules are distributed in a diffuse pattern throughout the sarcoplasm, (2) the titin molecules gradually associate with alpha- and gamma-actin-positive stress fiber-like structures (SFLS), (3) groups of titin molecules begin to segregate on the SFLS, and (4) titin molecules align in a mature doublet configuration in the sarcomeres of nascent myofibrils. Titin assembly on the SFLS often appeared prior to the onset of either alpha- or gamma-actin periodicity on nascent myofibrils; the latter result suggested a role for titin in sarcomeric organization. Actin distribution on SFLS and its periodicity on nascent myofibrils was usually identical between the alpha- and gamma-isoforms. This suggested that gamma-actin participated in myofibrillogenesis in a manner indistinguishable from that of alpha-actin. The transition seen from continuous actin staining of SFLS to the I-band staining pattern of mature myofibrils is discussed in relation to the corresponding reorganization of actin filaments and the molecular associations that this would entail.  相似文献   

6.
Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.  相似文献   

7.
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.  相似文献   

8.
Obscurin is a recently identified giant multidomain muscle protein (∼800 kDa) whose structural and regulatory functions remain to be defined. The goal of this study was to examine the effect of obscurin gene silencing induced by RNA interference on the dynamics of myofibrillogenesis and hypertrophic response to phenylephrine in cultured rat cardiomyocytes. We found that that the adenoviral transfection of short interfering RNA (siRNA) constructs targeting the first coding exon of obscurin sequence resulted in progressive depletion of cellular obscurin. Confocal microscopy demonstrated that downregulation of obscurin expression led to the impaired assembly of new myofibrillar clusters and considerable aberrations of the normal structure of the contractile apparatus. While the establishment of the initial periodic pattern of α-actinin localization remained mainly unaffected in siRNA-transfected cells, obscurin depletion did cause the defective lateral alignment of myofibrillar bundles, leading to their abnormal bifurcation, dispersal and multiple branching. Bending of immature myofibrils, apparently associated with the loss of their rigidity, a modified titin pattern, the absence of well-formed A-bands in newly formed contractile structures as documented by a diffuse localization of sarcomeric myosin labeling, and an occasional irregular periodicity of sarcomere spacing were typical of obscurin siRNA-treated cells. These results suggest that obscurin is indispensable for spatial positioning of contractile proteins and for the structural integration and stabilization of myofibrils, especially at the stage of myosin filament incorporation and A-band assembly. This demonstrates a vital role for obscurin in myofibrillogenesis and hypertrophic growth.  相似文献   

9.
《The Journal of cell biology》1989,108(6):2355-2367
Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating sites for the assembly of new sarcomeres. How 1.7-2.0 microns nascent sarcomeres can be added distally during elongation while the tips of the myofibrils remain inserted into submembranous adhesion plaques is unknown.  相似文献   

10.
Role of desmin filaments in chicken cardiac myofibrillogenesis   总被引:3,自引:0,他引:3  
Desmin filaments are muscle-specific intermediate filaments located at the periphery of the Z-discs, and they have been postulated to play a critical role in the lateral registration of myofibrils. Previous studies suggest that intermediate filaments may be involved in titin assembly during the early stages of myofibrillogenesis. In order to investigate the putative function of desmin filaments in myofibrillogenesis, rabbit anti-desmin antibodies were introduced into cultured cardiomyocytes by electroporation to perturb the normal function of desmin filaments. Changes in the assembly of several sarcomeric proteins were examined by immunofluorescence. In cardiomyocytes incorporated with normal rabbit serum, staining for alpha-actinin and muscle actin displayed the typical Z-line and I-band patterns, respectively, while staining for titin with monoclonal anti-titin A12 antibody, which labels a titin epitope at the A-I junction, showed the periodic doublet staining pattern. Staining for C-protein gave an amorphous pattern in early cultures and identified A-band doublets in older cultures. In contrast, in cardiomyocytes incorporated with anti-desmin antibodies, alpha-actinin was found in disoriented Z-discs and the myofibrils became fragmented, forming mini-sarcomeres. In addition, titin was not organized into the typical A-band doublet, but appeared to be aggregated. Muscle actin staining was especially weak and appeared in tiny clusters. Moreover, in all ages of cardiomyocytes tested, C-protein remained in the disassembled form. The present data suggest the essential role of desmin in myofibril assembly.  相似文献   

11.
New aspects of obscurin in human striated muscles   总被引:2,自引:2,他引:0  
Obscurin is a giant protein (700-800 kDa) present in both skeletal muscles and myocardium. According to animal studies, obscurin interacts with myofibrillar Z-discs during early muscle development, but is translocalised to be predominantly associated with the M-bands in mature muscles. The proposed function for obscurin is in the assembly and organisation of myosin into regular A-bands during formation of new sarcomeres. In the present study, the precise localisation of obscurin in developing and mature normal human striated muscle is presented for the first time. We show that obscurin surrounded myofibrils at the M-band level in both developing and mature human skeletal and heart muscles, which is partly at variance with that observed in animals. At maturity, obscurin also formed links between the peripheral myofibrils and the sarcolemma, and was a distinct component of the neuromuscular junctions. Obscurin should therefore be regarded as an additional component of the extrasarcomeric cytoskeleton. To test this function of obscurin, biopsies from subjects with exercise-induced delayed onset muscle soreness (DOMS) were examined. In these subjects, myofibrillar alterations related to sarcomerogenesis are observed. Our immunohistochemical analysis revealed that obscurin was never lacking in myofibrillar alterations, but was either preserved at the M-band level or diffusely spread over the sarcomeres. As myosin was absent in such areas but later reincorporated in the newly formed sarcomeres, our results support that obscurin also might play an important role in the formation and maintenance of A-bands.  相似文献   

12.
Muscle assembly: a titanic achievement?   总被引:13,自引:0,他引:13  
The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.  相似文献   

13.
The smallest contractile unit in striated muscles is the sarcomere. Although some of the classic features of contraction assume a uniform behavior of sarcomeres within myofibrils, the occurrence of sarcomere length nonuniformities has been well recognized for years, but it is yet not well understood. In the past years, there has been a great advance in experiments using isolated myofibrils and sarcomeres that has allowed scientists to directly evaluate sarcomere length nonuniformity. This review will focus on studies conducted with these preparations to develop the hypotheses that 1) force production in myofibrils is largely altered and regulated by intersarcomere dynamics and that 2) the mechanical work of one sarcomere in a myofibril is transmitted to other sarcomeres in series. We evaluated studies looking into myofibril activation, relaxation, and force changes produced during activation. We conclude that force production in myofibrils is largely regulated by intersarcomere dynamics, which arises from the cooperative work of the contractile and elastic elements within a myofibril.  相似文献   

14.
Although disruption of the microtubule (MT) array inhibits myogenesis in myocytes, the relationship between the assembly of microtubules (MT) and the organization of the contractile filaments is not clearly defined. We now report that the assembly of mature myofibrils in hypertrophic cardiac myocytes is disrupted by myoseverin, a compound previously shown to perturb the MT array in skeletal muscle cells. Myoseverin treated cardiac myocytes showed disruptions of the striated Z-bands containing alpha-actinin and desmin and the localization of tropomyosin, titin and myosin on mature sarcomeric filaments. In contrast, MT depolymerization by nocodazole did not perturb sarcomeric filaments. Similarly, expression of constitutively active stathmin as a non-chemical molecular method of MT depolymerization did not prevent sarcomere assembly. The extent of MT destabilization by myoseverin and nocodazole were comparable. Thus, the effect of myoseverin on sarcomere assembly was independent of its capacity for MT inhibition. Furthermore, we found that upon removal of myoseverin, sarcomeres reformed in the absence of an intact MT network. Sarcomere formation in cardiac myocytes therefore, does not appear to require an intact MT network and thus we conclude that a functional MT array appears to be dispensable for myofibrillogenesis.  相似文献   

15.
An investigation of developing skeletal muscle necessitatesthe study of three categories; the derivation of muscle cellsor fibers, myofilament synthesis and interactions, assemblyof myofilaments into functional sarcomeres of striated myofibrils.With few exceptions, skeletal muscle cells are of mesodermalorigin, and consist of rounded mononucleated cells which elongateand fuse with one another to become myotubes. Within the sarcoplasm,myofibrillar proteins are synthesized and grouped into interactingthick and thin filaments. Crude, non-striated myofibrils resultfrom linear arrangements of thick and thin filaments which arehorizontally aligned by the invaginating sarcotubular system.After Z-lines form, providing attachment sites for thin filaments,a typical banding pattern follows. The newly formed Z-linespull apart, followed by the attached thin filaments, and repeating"relaxed" sarcomeres are the resulting striated myofibrillarpattern.  相似文献   

16.
Experiments are described supporting the proposition that the assembly of stress fibers in non-muscle cells and the assembly of myofibrils in cardiac cells share conserved mechanisms. Double staining with a battery of labeled antibodies against membrane-associated proteins, myofibrillar proteins, and stress fiber proteins reveals the following: (a) dissociated, cultured cardiac myocytes reconstitute intercalated discs consisting of adherens junctions (AJs) and desmosomes at sites of cell-cell contact and sub-sarcolemmal adhesion plaques (SAPs) at sites of cell-substrate contact; (b) each AJ or SAP associates proximally with a striated myofibril, and conversely every striated myofibril is capped at either end by an AJ or a SAP; (C) the invariant association between a given myofibril and its SAP is especially prominent at the earliest stages of myofibrillogenesis; nascent myofibrils are capped by oppositely oriented SAPs; (d) the insertion of nascent myofibrils into AJs or into SAPs invariably involves vinculin, alpha-actin, and sarcomeric alpha-actinin (s-alpha-actinin); (e) AJs are positive for A-CAM but negative for talin and integrin; SAPs lack A-CAM but are positive for talin and integrin; (f) in cardiac cells all alpha-actinin-containing structures invariably are positive for the sarcomeric isoform, alpha-actin and related sarcomeric proteins; they lack non-s-alpha-actinin, gamma-actin, and caldesmon; (g) in fibroblasts all alpha-actinin-containing structures are positive for the non-sarcomeric isoform, gamma-actin, and related non-sarcomeric proteins, including caldesmon; and (h) myocytes differ from all other types of adherent cultured cells in that they do not assemble authentic stress fibers; instead they assemble stress fiber-like structures of linearly aligned I-Z-I-like complexes consisting exclusively of sarcomeric proteins.  相似文献   

17.
The giant muscle protein titin (connectin) is known to serve as a cytoskeletal element in muscle sarcomeres. It elastically restrains lengthening sarcomeres, it aids the integrity and central positioning of the A-band in the sarcomere and it may act as a template upon which some sarcomeric components are laid down during myogenesis. A puzzle has been how titin molecules, arranged systematically within the hexagonal A-band lattice of myosin filaments, can redistribute through the I-band to their anchoring sites in the tetragonal Z-band lattice. Recent work by Liversage and colleagues has suggested that there are six titin molecules per half myosin filament. Since there are two actin filaments per half myosin filament in a half sarcomere, this means that there are three titin molecules interacting with each Z-band unit cell containing one actin filament in the same sarcomere and one of opposite polarity from the next sarcomere. Liversage et al. suggested that the three titins might be distributed with two on an actin filament of one polarity and one on the filament of opposite polarity. Here, we build on this suggestion and discuss the transition of titin from the A-band to the Z-band. We show that there are good structural and mechanical reasons why titin might be organised as Liversage et al., suggested and we discuss the possible relationships between A-band arrangements in successive sarcomeres along a myofibril.  相似文献   

18.
A rat polyclonal anti-M-line protein antiserum and three mouse monoclonal anti-titin antibodies (E2, F3, and A12) were used to study the spatiotemporal relationship between M-line proteins and titin during myofibril assembly in cultured chicken cardiomyocytes by immunofluorescence microscopy. In day 2 cultures, M-line proteins and titin were detected as punctate staining in most cardiomyocytes, which possessed many nonstriated fibrils. At a late stage (day 3 cultures), M-line proteins were incorporated into dot-like structures along nonstriated fibrils, while titin staining was continuous on these structures. As development progressed, M-line proteins were registered in periodic pattern in the mid-A band. In cardiomyocytes from day 5 cultures, the titin bands were separated by an unstained region, and achieved their adult doublet pattern. Thus, the organization of titin in the sarcomere appears to occur later than that of M-line proteins in the M-line. Our morphological data indicate that the early registration of M-line proteins in primitive myofibrils may guide titin filament alignment via interaction between M-line proteins and titin. In order to investigate the role of M-line proteins in the assembly of titin filaments, anti-M-line protein or anti-titin antibodies were introduced into cultured cardiomyocytes by electroporation to functionally bind the respective proteins, and the profile of myofibril assembly was examined. Cardiomyocytes from day 2–3 cultures with incorporated anti-M-line protein antibodies became shrunk, and exhibited defective myofibrillar assembly, as shown by the failure of titin to assemble into a typical sarcomeric pattern. Incorporation of anti-titin antibody E2, which recognizes the M-line end domain of titin, resulted in the failure of M-line proteins organized into the M-line structure, as shown by random, sporadic staining with anti-M-line protein antibody. These studies confirm the essential role of M-line proteins in the organization of titin filaments in the sarcomere and that the interaction between titin and M-line proteins is crucial to the formation of the M-line structure. J. Cell. Biochem. 71:82–95, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
A three-step model for myofibrillogenesis has been proposed for the formation of myofibrils [Rhee et al., 1994: Cell Motil. Cytoskeleton 28:1-24; Sanger et al., 2002: Adv. Exp. Med. 481:89-105]: premyofibril to nascent myofibril to mature myofibril. We have found two chemically related inhibitors that will arrest development at both the first and second step. Cultured quail embryonic skeletal myoblasts were treated with ethyl methane sulfonate (EMS) or 2-aminoethyl-methanesulfonate (MTSEA+). When the myoblasts fused in the presence of either of these compounds, myosheets rather than myotubes formed. Treated cells were fixed and immunostained against multiple proteins commonly found in muscle cells. Protein expression and localization throughout the myosheet were similar to that of developing myotube tips. Cells treated with high concentrations of EMS (10 mM) stained for non-muscle myosin II, sarcomeric alpha-actinin, and tropomyosin. No zeugmatin (Z-band region of titin) or muscle myosin II antibody staining was detected in fibers in this treatment group. These fibers are comparable to premyofibrils in control myotubes. At lower concentrations of EMS (7.5 to 5 mM), fibers that formed stained for muscle myosin II and titin as well as for non-muscle myosin IIB, sarcomeric alpha-actinin, and tropomyosin. Muscle myosin II was in an unbanded pattern. These fibers are comparable to nascent myofibrils observed during normal myofibrillogenesis. Similar effects to those obtained by treating cells with EMS were obtained when we treated cultured cells with MTSEA+ (5 mM) and stained them with sarcomeric alpha-actinin. MTSEA+ is chemically related to EMS, and is a well-known inhibitor of ryanodine receptors in skeletal muscle cells. Some abnormalities such as nemaline-like rods and other protein aggregates also appear within the myosheet during EMS and MTSEA+ treatment. Removal of these two inhibitors of myofibrillogenesis allows the premyofibrils and nascent myofibrils to form mature myofibrils.  相似文献   

20.
Residual force enhancement in myofibrils and sarcomeres   总被引:1,自引:0,他引:1  
Residual force enhancement has been observed following active stretch of skeletal muscles and single fibres. However, there has been intense debate whether force enhancement is a sarcomeric property, or is associated with sarcomere length instability and the associated development of non-uniformities. Here, we studied force enhancement for the first time in isolated myofibrils (n=18) that, owing to the strict in series arrangement, allowed for evaluation of this property in individual sarcomeres (n=79). We found consistent force enhancement following stretch in all myofibrils and each sarcomere, and forces in the enhanced state typically exceeded the isometric forces on the plateau of the force-length relationship. Measurements were made on the plateau and the descending limb of the force-length relationship and revealed gross sarcomere length non-uniformities prior to and following active myofibril stretching, but in contrast to previous accounts, revealed that sarcomere lengths were perfectly stable under these experimental conditions. We conclude that force enhancement is a sarcomeric property that does not depend on sarcomere length instability, that force enhancement varies greatly for different sarcomeres within the same myofibril and that sarcomeres with vastly different amounts of actin-myosin overlap produce the same isometric steady-state forces. This last finding was not explained by differences in the amount of contractile proteins within sarcomeres, vastly different passive properties of individual sarcomeres or (half-) sarcomere length instabilities, suggesting that the basic mechanical properties of muscles, such as force enhancement, force depression and creep, which have traditionally been associated with sarcomere instabilities and the corresponding dynamic redistribution of sarcomere lengths, are not caused by such instabilities, but rather seem to be inherent properties of the mechanisms of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号