首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing alpha6 and alpha3 subunits. alpha-conotoxin PIA displays 75-fold higher affinity for rat alpha6/alpha3beta2beta3 nAChRs than for rat alpha3beta2 nAChRs. We have determined the three-dimensional structure of alpha-conotoxin PIA by nuclear magnetic resonance spectroscopy. The alpha-conotoxin PIA has an "omega-shaped" overall topology as other alpha4/7 subfamily conotoxins. Yet, unlike other neuronally targeted alpha4/7-conotoxins, its N-terminal tail Arg1-Asp2-Pro3 protrudes out of its main molecular body because Asp2-Pro3-Cys4-Cys5 forms a stable type I beta-turn. In addition, a kink introduced by Pro15 in the second loop of this toxin provides a distinct steric and electrostatic environment from those in alpha-conotoxins MII and GIC. By comparing the structure of alpha-conotoxin PIA with other functionally related alpha-conotoxins we suggest structural features in alpha-conotoxin PIA that may be associated with its unique receptor recognition profile.  相似文献   

2.
Recent work suggests that 5-iodo-A-85380, a radioiodinated analog of the 3-pyridyl ether A-85380, represents a promising imaging agent for non-invasive, in vivo studies of alphaAbeta2* nicotinic acetylcholine receptors (nAChRs; *denotes receptors containing the indicated subunits), because of its low non-specific binding, low in vivo toxicity and high selectivity for alpha4beta2* nAChRs. As an approach to elucidate nAChR subtypes expressed in striatum, we carried out competitive autoradiography in monkey and rat brain using 5-[125I]iodo-A-85380 ([125I]A-85380) and [125I]alpha-conotoxin MII, a ligand that binds with high affinity to alpha6* and alpha3* nAChRs, but not to alpha4beta2* nAChRs. Although A-85380 is reported to be selective for alpha4beta2* nAChRs, we observed that A-85380 completely inhibited [125I]alpha-conotoxin MII binding in rat striatum and that A-85380 blocked >90% of [125I] alpha-conotoxin MII sites in monkey caudate and putamen. These results suggest that A-85380 binds to non-alpha4beta2* nAChRs, including putative alpha6* nAChRs. Experiments to determine the percentage of [125I]A-85380 sites that contain alpha-conotoxin MII-sensitive (alpha6beta2*) nAChRs indicate that they represent about 10% of [125I]A-85380 sites in rodent striatum and about 30% of sites in monkey caudate and putamen. These data are important for identifying alterations in nicotinic receptor subtypes in Parkinson's disease and other basal ganglia disorders both in in vitro and in in vivo imaging studies.  相似文献   

3.
Ellison M  Gao F  Wang HL  Sine SM  McIntosh JM  Olivera BM 《Biochemistry》2004,43(51):16019-16026
The Conus peptides alpha-conotoxin ImI (alpha-ImI) and ImII (alpha-ImII) differ by only three of 11 residues in their primary sequences and yet are shown to inhibit the human alpha7 nicotinic acetylcholine receptor (nAChR) by targeting different sites. Mutations at both faces of the classical ligand binding site of the alpha7 nAChR strongly affect antagonism by alpha-ImI but not alpha-ImII. The effects of the mutations on alpha-ImI binding and functional antagonism are explained by computational docking of the NMR structure of alpha-ImI to a homology model of the ligand binding domain of the alpha7 nAChR. A distinct binding site for alpha-ImII is further demonstrated by its weakened antagonism for a chimeric receptor in which the membrane-spanning domains and intervening linkers of the alpha7 nAChR are replaced with the corresponding sequence from the serotonin type-3 receptor (5HT(3)). The two toxins also discriminate between different subtypes of human nicotinic receptors; alpha-ImII most strongly blocks the human alpha7 and alpha1beta1deltaepsilon receptor subtypes, while alpha-ImI most potently blocks the human alpha3beta2 subtype. Collectively, the data show that while alpha-ImI targets the classical competitive ligand binding site in a subtype selective manner, alpha-ImII is a probe of a novel inhibitory site in homomeric alpha7 nAChRs.  相似文献   

4.
The structures of acetylcholine-binding protein (AChBP) and nicotinic acetylcholine receptor (nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha3beta2 model to identify beta2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha3beta2 nAChR by two-electrode voltage clamp analysis. Although a beta2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta2-F117A, beta2-V109A, and beta2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta2-F117A mutant was combined with the alpha4 instead of the alpha3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta2-F117A, beta2-V109A, and beta2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha3beta2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.  相似文献   

5.
alpha-Conotoxins, from cone snails, and alpha-neurotoxins, from snakes, are competitive inhibitors of nicotinic acetylcholine receptors (nAChRs) that have overlapping binding sites in the ACh binding pocket. These disulphide-rich peptides are used extensively as tools to localize and pharmacologically characterize specific nAChRs subtypes. Recently, a homology model based on the high-resolution structure of an ACh binding protein (AChBP) allowed the three-fingered alpha-neurotoxins to be docked onto the alpha7 nAChR. To investigate if alpha-conotoxins interact with the nAChR in a similar manner, we built homology models of human alpha7 and alpha3beta2 nAChRs, and performed docking simulations of alpha-conotoxins ImI, PnIB, PnIA and MII using the program GOLD. Docking revealed that alpha-conotoxins have a different mode of interaction compared with alpha-neurotoxins, with surprisingly few nAChR residues in common between their overlapping binding sites. These docking experiments show that ImI and PnIB bind to the ACh binding pocket via a small cavity located above the beta9/beta10 hairpin of the (+)alpha7 nAChR subunit. Interestingly, PnIB, PnIA and MII were found to bind in a similar location on alpha7 or alpha3beta2 receptors mostly through hydrophobic interactions, while ImI bound further from the ACh binding pocket, mostly through electrostatic interactions. These findings, which distinguish alpha-conotoxin and alpha-neurotoxin binding modes, have implications for the rational design of selective nAChR antagonists.  相似文献   

6.
Luo S  McIntosh JM 《Biochemistry》2004,43(21):6656-6662
The embryonic mouse muscle nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel formed by alpha1, beta1, delta, and gamma subunits. The receptor contains two ligand binding sites at alpha/delta and alpha/gamma subunit interfaces. [(3)H]Curare preferentially binds the alpha/gamma interface. We describe the synthesis and properties of a high-affinity iodinated ligand that selectively binds the alpha/delta interface. An analogue of alpha-conotoxin MI was synthesized with an iodine attached to Tyr-12 (iodo-alpha-MI). The analogue potently blocks the fetal mouse muscle subtype of nAChR expressed in Xenopus oocytes. It failed, however, to block alpha3beta4, alpha4beta2, or alpha7 nAChRs. Iodo-alpha-MI potently blocks the alpha1beta1delta but not the alpha1beta1gamma subunit combination expressed in Xenopus oocytes indicating selectivity for the alpha/delta subunit interface. Alpha-conotoxin MI was subsequently radioiodinated, and its properties were further evaluated. Saturation experiments indicate that radioiodinated alpha-conotoxin MI binds to TE671 cell homogenates with a Hill slope of 0.95 +/- 0.0094. Kinetic studies indicate that the binding of [(125)I]alpha-conotoxin MI is reversible (k(off) = 0.084 +/- 0.0045 min(-1)); k(on) is 8.5 x 10(7) min(-1) M(-1). The calculated k(d) is 0.98 nM. This potency is approximately 20-fold higher than the unmodified alpha-MI peptide. Unlike [(125)I]alpha-bungarotoxin, [(125)I]alpha-conotoxin MI binding to TE671 cell homogenates is fully displaceable by the small molecule antagonist d-tubocurarine.  相似文献   

7.
A series of epibatidine analogues was synthesized and characterized in vitro. These compounds are high affinity ligands for the nicotinic acetylcholine receptors (nAChR). They display binding selectivity for the alpha(x)beta2 subtypes of nAChRs over the alpha(x)beta4 subtypes, and especially for the alpha4beta2 and alpha2beta2 subtypes. Furthermore, most of these new nicotinic compounds display little, if any, agonist activities at alpha3beta4 nAChR. As a result they might become lead structures for the design and synthesis of highly selective ligands for nAChR subtypes containing the beta2 subunit.  相似文献   

8.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels. Alpha subunits, together with beta 2 and/or beta 4 subunits, form ligand-binding sites at alpha/beta subunit interfaces. Predatory marine snails of the genus Conus are a rich source of nAChR-targeted peptides. Using conserved features of the alpha-conotoxin signal sequence and 3'-untranslated sequence region, we have cloned a novel gene from the fish-eating snail, Conus bullatus; the gene codes for a previously unreported alpha-conotoxin with unusual 4/4 spacing of amino acids in the two disulfide loops. Chemical synthesis of the predicted mature toxin was performed. The resulting peptide, alpha-conotoxin BuIA, was tested on cloned nAChRs expressed in Xenopus oocytes. The peptide potently blocks numerous rat nAChR subtypes, with highest potency for alpha 3- and chimeric alpha 6-containing nAChRs; BuIA blocks alpha 6/alpha 3 beta 2 nAChRs with a 40,000-fold lower IC(50) than alpha 4 beta 2 nAChRs. The kinetics of toxin unblock are dependent on the beta subunit. nAChRs with a beta 4 subunit have very slow off-times, compared with the corresponding beta 2 subunit-containing nAChR. In each instance, rat alpha x beta 4 may be distinguished from rat alpha x beta 2 by the large difference in time to recover from toxin block. Similar results are obtained when comparing mouse alpha 3 beta 2 to mouse alpha 3 beta 4, and human alpha 3 beta2 to human alpha 3 beta 4, indicating that the beta subunit dependence extends across species. Thus, alpha-conotoxin BuIA also represents a novel probe for distinguishing between beta 2- and beta 4-containing nAChRs.  相似文献   

9.
Neuronal nAChRs are a diverse family of pentameric ion channels with wide distribution throughout cells of the nervous and immune systems. However, the role of specific subtypes in normal and pathological states remains poorly understood due to the lack of selective probes. Here, we used a binding assay based on acetylcholine-binding protein (AChBP), a homolog of the nicotinic acetylcholine ligand-binding domain, to discover a novel alpha-conotoxin (alpha-TxIA) in the venom of Conus textile. Alpha-TxIA bound with high affinity to AChBPs from different species and selectively targeted the alpha(3)beta(2) nAChR subtype. A co-crystal structure of Ac-AChBP with the enhanced potency analog TxIA(A10L), revealed a 20 degrees backbone tilt compared to other AChBP-conotoxin complexes. This reorientation was coordinated by a key salt bridge formed between Arg5 (TxIA) and Asp195 (Ac-AChBP). Mutagenesis studies, biochemical assays and electrophysiological recordings directly correlated the interactions observed in the co-crystal structure to binding affinity at AChBP and different nAChR subtypes. Together, these results establish a new pharmacophore for the design of novel subtype-selective ligands with therapeutic potential in nAChR-related diseases.  相似文献   

10.
The alpha9 and alpha10 nicotinic cholinergic subunits assemble to form the receptor believed to mediate synaptic transmission between efferent olivocochlear fibers and hair cells of the cochlea, one of the few examples of postsynaptic function for a non-muscle nicotinic acetylcholine receptor (nAChR). However, it has been suggested that the expression profile of alpha9 and alpha10 overlaps with that of alpha7 in the cochlea and in sites such as dorsal root ganglion neurons, peripheral blood lymphocytes, developing thymocytes, and skin. We now report the cloning, total synthesis, and characterization of a novel toxin alpha-conotoxin PeIA that discriminates between alpha9alpha10 and alpha7 nAChRs. This is the first toxin to be identified from Conus pergrandis, a species found in deep waters of the Western Pacific. Alpha-conotoxin PeIA displayed a 260-fold higher selectivity for alpha-bungarotoxin-sensitive alpha9alpha10 nAChRs compared with alpha-bungarotoxin-sensitive alpha7 receptors. The IC50 of the toxin was 6.9 +/- 0.5 nM and 4.4 +/- 0.5 nM for recombinant alpha9alpha10 and wild-type hair cell nAChRs, respectively. Alpha-conotoxin PeIA bears high resemblance to alpha-conotoxins MII and GIC isolated from Conus magus and Conus geographus, respectively. However, neither alpha-conotoxin MII nor alpha-conotoxin GIC at concentrations of 10 microM blocked acetylcholine responses elicited in Xenopus oocytes injected with the alpha9 and alpha10 subunits. Among neuronal non-alpha-bungarotoxin-sensitive receptors, alpha-conotoxin PeIA was also active at alpha3beta2 receptors and chimeric alpha6/alpha3beta2beta3 receptors. Alpha-conotoxin PeIA represents a novel probe to differentiate responses mediated either through alpha9alpha10 or alpha7 nAChRs in those tissues where both receptors are expressed.  相似文献   

11.
A series of bis-nicotinium, bis-pyridinium, bis-picolinium, bis-quinolinium and bis-isoquinolinium compounds was evaluated for their binding affinity at nicotinic acetylcholine receptors (nAChRs) using rat brain membranes. N,N'-Decane-1,12-diyl-bis-nicotinium diiodide (bNDI) exhibited the highest affinity for [(3)H]nicotine binding sites (K(i)=330 nM), but did not inhibit [(3)H]methyllycaconitine binding (K(i) >100 microM), indicative of an interaction with alpha4beta2*, but not alpha7* receptor subtypes, respectively. Also, bNDI inhibited (IC(50)=3.76 microM) nicotine-evoked (86)Rb(+) efflux from rat thalamic synaptosomes, indicating antagonist activity at alpha4beta2* nAChRs. N,N'-Dodecane-1,12-diyl-bis-quinolinium dibromide (bQDDB) exhibited highest affinity for [(3)H]methyllycaconitine binding sites (K(i)=1.61 microM), but did not inhibit [(3)H]nicotine binding (K(i)>100 microM), demonstrating an interaction with alpha7*, but not alpha4beta2* nAChRs. Thus, variation of N-n-alkyl chain length together with structural modification of the azaaromatic quaternary ammonium moiety afforded selective antagonists for the alpha4beta2* nAChR subtype, as well as ligands with selectivity at alpha7* nAChRs.  相似文献   

12.
Alpha-conotoxins from Conus snails are indispensable tools for distinguishing various subtypes of nicotinic acetylcholine receptors (nAChRs), and synthesis of alpha-conotoxin analogs may yield novel antagonists of higher potency and selectivity. We incorporated additional positive charges into alpha-conotoxins and analyzed their binding to nAChRs. Introduction of Arg or Lys residues instead of Ser12 in alpha-conotoxins GI and SI, or D12K substitution in alpha-conotoxin SIA increased the affinity for both the high- and low-affinity sites in membrane-bound Torpedo californica nAChR. The effect was most pronounced for [D12K]SIA with 30- and 200-fold enhancement for the respective sites, resulting in the most potent alpha-conotoxin blocker of the Torpedo nAChR among those tested. Similarly, D14K substitution in alpha-conotoxin [A10L]PnIA, a blocker of neuronal alpha7 nAChR, was previously shown to increase the affinity for this receptor and endowed [A10L,D14K]PnIA with the capacity to distinguish between acetylcholine-binding proteins from the mollusks Lymnaea stagnalis and Aplysia californica. We found that [A10L,D14K]PnIA also distinguishes two alpha7-like anion-selective nAChR subtypes present on identified neurons of L. stagnalis: [D14K] mutation affected only slightly the potency of [A10L]PnIA to block nAChRs on neurons with low sensitivity to alpha-conotoxin ImI, but gave a 50-fold enhancement of blocking activity in cells with high sensitivity to ImI. Therefore, the introduction of an additional positive charge in the C-terminus of alpha-conotoxins targeting some muscle or neuronal nAChRs made them more discriminative towards the respective nAChR subtypes. In the case of muscle-type alpha-conotoxin [D12K]SIA, the contribution of the Lys12 positive charge to enhanced affinity towards Torpedo nAChR was rationalized with the aid of computer modeling.  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) that contain an alpha7 subunit are widely distributed in neuronal and nonneuronal tissue. These receptors are implicated in the release of neurotransmitters such as glutamate and in functions ranging from thought processing to inflammation. Currently available ligands for alpha7 nAChRs have substantial affinity for one or more other nAChR subtypes, including those with an alpha1, alpha3, alpha6, and/or alpha9 subunit. An alpha-conotoxin gene was cloned from Conus arenatus. Predicted peptides were synthesized and found to potently block alpha3-, alpha6-, and alpha7-containing nAChRs. Structure-activity information regarding conotoxins from distantly related Conus species was employed to modify the C. arenatus derived toxin into a novel, highly selective alpha7 nAChR antagonist. This ligand, alpha-CtxArIB[V11L,V16D], has low nanomolar affinity for rat alpha7 homomers expressed in Xenopus laevis oocytes, and antagonism is slowly reversible. Kinetic analysis provided insight into the mechanism of antagonism. alpha-CtxArIB interacts with five ligand binding sites per alpha7 receptor, and occupation of a single site is sufficient to block function. The peptide was also shown to be highly selective in competition binding assays in rat brain membranes. alpha-CtxArIB[V11L,V16D] is the most selective ligand yet reported for alpha7 nAChRs.  相似文献   

14.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

15.
Many venomous organisms produce toxins that disrupt neuromuscular communication to paralyze their prey. One common class of such toxins comprises nicotinic acetylcholine receptor antagonists (nAChRs). Thus, most toxins that act on nAChRs are targeted to the neuromuscular subtype. The toxin characterized in this report, alpha-conotoxin GIC, is a most striking exception. The 16-amino acid peptide was identified from a genomic DNA clone from Conus geographus. The predicted mature toxin was synthesized, and synthetic toxin was used in all studies described. alpha-Conotoxin GIC shows no paralytic activity in fish or mice. Furthermore, even at concentrations up to 100 microm, the peptide has no detectable effect on the human muscle nicotinic receptor subtype heterologously expressed in Xenopus oocytes. In contrast, the toxin has high affinity (IC(50) approximately 1.1 nm) for the human alpha3beta2 subunit combination, making it the most neuronally selective nicotinic antagonist characterized thus far. Although alpha-conotoxin GIC shares some sequence similarity with alpha-conotoxin MII, which is also a potent alpha3beta2 nicotinic antagonist, it is much less hydrophobic, and the kinetics of channel block are substantially different. It is noteworthy that the nicotinic ligands in C. geographus venom fit an emerging pattern in venomous predators, with one nicotinic antagonist targeted to the muscle subtype (thereby causing paralysis) and a second nicotinic antagonist targeted to the alpha3beta2 nAChR subtype (possibly inhibiting the fight-or-flight response).  相似文献   

16.
A series of 2-(arylmethyl)-3-substituted quinuclidines was developed as alpha7 neuronal nicotinic acetylcholine receptor (nAChR) agonists based on a putative pharmacophore model. The series is highly selective for the alpha7 over other nAChRs (e.g., the alpha4beta2 of the CNS, and the muscle and ganglionic subtypes) and is functionally tunable at alpha7. One member of the series, (+)-N-(1-azabicyclo[2.2.2]oct-3-yl)benzo[b]furan-2-carboxamide (+)-8l), has potent agonistic activity for the alpha7 nAChR (EC(50)=33nM, I(max)=1.0), at concentrations below those that result in desensitization.  相似文献   

17.
We have determined a high-resolution three-dimensional structure of alpha-conotoxin BuIA, a 13-residue peptide toxin isolated from Conus bullatus. Despite its unusual 4/4 disulfide bond layout alpha-conotoxin BuIA exhibits strong antagonistic activity at alpha6/alpha3beta2beta3, alpha3beta2, and alpha3beta4 nAChR subtypes like some alpha4/7 conotoxins. alpha-Conotoxin BuIA lacks the C-terminal beta-turn present within the second disulfide loop of alpha4/7 conotoxins, having only a "pseudo omega-shaped" molecular topology. Nevertheless, it contains a functionally critical two-turn helix motif, a feature ubiquitously found in alpha4/7 conotoxins. Such an aspect seems mainly responsible for similarities in the receptor recognition profile of alpha-conotoxin BuIA to alpha4/7 conotoxins. Structural comparison of alpha-conotoxin BuIA with alpha4/7 conotoxins and alpha4/3 conotoxin ImI suggests that presence of the second helical turn portion of the two-turn helix motif in alpha4/7 and alpha4/4 conotoxins may be important for binding to the alpha3 and/or alpha6 subunit of nAChR.  相似文献   

18.
Conotoxins (Ctx) form a large family of peptide toxins from cone snail venoms that act on a broad spectrum of ion channels and receptors. The subgroup alpha-Ctx specifically and selectively binds to subtypes of nicotinic acetylcholine receptors (nAChRs), which are targets for treatment of several neurological disorders. Here we present the structure at a resolution of 2.4 A of alpha-Ctx PnIA (A10L D14K), a potent blocker of the alpha(7)-nAChR, bound with high affinity to acetylcholine binding protein (AChBP), the prototype for the ligand-binding domains of the nAChR superfamily. Alpha-Ctx is buried deep within the ligand-binding site and interacts with residues on both faces of adjacent subunits. The toxin itself does not change conformation, but displaces the C loop of AChBP and induces a rigid-body subunit movement. Knowledge of these contacts could facilitate the rational design of drug leads using the Ctx framework and may lead to compounds with increased receptor subtype selectivity.  相似文献   

19.
alpha-Conotoxins are disulfide-rich peptides that are competitive antagonists of nicotinic acetylcholine receptors (nAChRs). Despite their small size, different alpha-conotoxins are able to discriminate among different subtypes of mammalian nAChRs. In this report, the activity of two peptides from the venom of Conus pennaceus, alpha-conotoxins PnIA and PnIB, are examined. Although the toxins differ in only two residues, PnIA preferentially blocks alpha3beta2 nAChRs, whereas PnIB prefers the alpha7 subtype. Point mutation chimeras of these alpha-conotoxins were synthesized and their activities assessed on Xenopus oocytes expressing specific nAChRs. Change of a single residue, Ala10 to Leu, in PnIA (to form PnIA [A10L]) converts the parent peptide from alpha3beta2-preferring to alpha7-preferring; furthermore, PnIA [A10L] blocks the alpha7 receptor with an IC(50) (12.6 nM) that is lower than that of either parent peptide. Kinetic analysis indicates that differences in affinity among the analogues are primarily due to differences in off-rate, with PnIA [A10L]'s interaction with alpha7 having the smallest off-rate (k(off) = 0.17 min(-)(1)). Thermodynamic analysis indicates that Leu10 enhances the peptide's interaction with alpha7, but not alpha3beta2, receptors, whereas Ser11 (in PnIA [N11S]) reduces its affinity for both alpha7 and alpha3beta2 nAChRs.  相似文献   

20.
The Xenopus laevis oocyte expression system was used to determine the activities of alpha-conotoxins EpI and the ribbon isomer of AuIB, on defined nicotinic acetylcholine receptors (nAChRs). In contrast to previous findings on intracardiac ganglion neurones, alpha-EpI showed no significant activity on oocyte-expressed alpha3beta4 and alpha3beta2 nAChRs but blocked the alpha7 nAChR with an IC50 value of 30 nM. A similar IC50 value (103 nM) was obtained on the alpha7/5HT3 chimeric receptor stably expressed in mammalian cells. Ribbon AuIB maintained its selectivity on oocyte-expressed alpha3beta4 receptors but unlike in native cells, where it was 10-fold more potent than native alpha-AuIB, had 25-fold lower activity. These results indicate that as yet unidentified factors influence alpha-conotoxin pharmacology at native versus oocyte-expressed nAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号