首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait.  相似文献   

2.
The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.  相似文献   

3.
Glucose regulated protein 75 (GRP75) is an important molecular chaperon belonged to the heat shock protein (HSP) family. To evaluate the effect of GRP75 overexpression on PC12 cells under glucose deprivation, cell viability and mitochondrial function of GRP75-overexpressing PC12 cells and the vector transfected control PC12 cells were monitored during glucose deprivation. Upon exposure to glucose deprivation, GRP75-overexpressing PC12 cells exhibited more moderate cell damage than control PC12 cells. Both of the two groups of cells showed a decreased ATP level following an early increase in the condition of glucose deprivation, and the mitochondrial potential were also reduced in the similar manner in the two groups of cells. Control PC12 cells showed an immediate and rapid increase in ROS accumulation after the onset of GD treatment, and this accumulation was slowed and reduced in GRP75-overexpressing PC12 cells. These findings suggested that GRP75 could inhibit the ROS accumulation, and it may be associated with the cytoprotective effect of GRP75 overexpression upon glucose deprivation. (Mol Cell Biochem 268: 45–51, 2005)  相似文献   

4.
The phosphatidylinositol 3 kinase (PI3K)-Akt/PKB pathway protects neurons from apoptosis caused by diverse stress stimuli. However, its protective role against the amyloid beta peptide (Abeta), a major constituent of Alzheimer's disease plaques, has not been studied. We investigated the effect of the Abeta-derived Abeta(25-35) peptide on apoptosis and on the Akt survival pathway in PC12 cells. Cells submitted to micromolar concentrations of Abeta(25-35) exhibited increased production of reactive oxygen species (ROS) and morphological alterations consistent with apoptosis. Akt1 was activated shortly after incubation with Abeta(25-35) and Abeta(1-40) with a kinetics different to that of nerve-derived growth factor. Akt1 activation was blocked by the PI3K inhibitor wortmannin. We tested the hypothesis that Akt1 might modify the vulnerability of neural cells to apoptosis induced by Abeta(25-35). Overexpression of an active version of Akt1 attenuated the apoptotic effect of Abeta(25-35) as determined by flow cytometry. Moreover, PC12 cells overexpressing a membrane-targeted N-myristylated fusion protein of enhanced green fluorescence protein (EGFP) and mouse Akt1 exhibited lower levels of ROS than control EGFP-transfected cells. The present findings demonstrate that Akt1 is activated in response to Abeta(25-35) in a PI3K-dependent manner and that active Akt1 protects PC12 cells against the pro-apoptotic action of this peptide.  相似文献   

5.
6.
The beta-amyloid protein, component of the senile plaques found in Alzheimer brains is proteolytically derived from the beta-amyloid precursor protein (APP), a larger membrane-associated protein that is expressed in both neural and non-neural cells. Overexpression of APP might be one of the mechanisms that more directly contributes to the development of Alzheimer's disease. The APP gene expression is regulated by a number of cellular mediators including nerve growth factor (NGF) and other ligands of tyrosine kinase receptors. We have previously described that NGF increases APP mRNA levels in PC12 cells. However, the molecular mechanisms and the precise signalling pathways that mediate its regulation are not yet well understood. In the present study we present evidence that NGF, and to a lesser extent fibroblast growth factor and epidermal growth factor, stimulate APP promoter activity in PC12 cells. This induction is mediated by DNA sequences located between the nucleotides - 307 and - 15, and involves activation of the Ras-MAP kinase signalling pathway. In contrast, we have also found that NGF-induced secretion of soluble fragments of APP into the culture medium is mediated by a Ras independent mechanism.  相似文献   

7.
An apparent conservative mutation, Leu to Val, at the second residue of the rat liver mitochondrial aldehyde dehydrogenase (ALDH) presequence resulted in a precursor protein that was not imported into mitochondria. Additional mutants were made to substitute various amino acids with nonpolar side chains for Leu2. The Ile, Phe, and Trp mutants were imported to an extent similar to that of the native precursor, but the Ala mutant was imported only about one-fourth as well. It was shown that the N-terminal methionine was removed from the L2V mutant in a reaction catalyzed by methionine aminopeptidase. The N-terminal methionine of native pALDH and the other mutant presequences was blocked, presumably by acetylation. Because of the difference in co-translational modification, the L2V mutant sustained a significant loss in the available hydrophobic surface of the presequence. Import competence was restored to the L2V mutant when it was translated using a system that did not remove Met1. The removal of an Arg-Gly-Pro helix linker segment (residues 11-14) from the L2V mutant, which shifted three leucine residues toward the N-terminus, also restored import competence. These results lead to the conclusion that a minimum amount of hydrophobic surface area near the N-termini of mitochondrial presequences is an essential property to determine their ability to be imported. As a result, both electrostatic and hydrophobic components must be considered when trying to understand the interactions between precursor proteins and proteins of the mitochondrial import apparatus.  相似文献   

8.
9.
The mitochondrial processing peptidase (MPP) specifically cleaves N-terminal targeting signals from hundreds of nuclear-encoded, matrix-targeted precursor proteins. In contrast to yeast and mammals, the plant MPP is an integral component of the respiratory cytochrome bc1 complex. The topology of the protein import channel in relation to MPP/bc1 in plants was studied using chimeric precursors containing truncated cytochrome b2 (cyt b2) proteins of 55-167 residues in length, fused to dihydrofolate reductase (DHFR). The DHFR domain could be tightly folded by methotrexate (MTX), generating translocation intermediates trapped in the import channel with only the cyt b2 pre-sequence/mature domain protruding into the matrix. Spinach and soybean mitochondria imported and processed unfolded precursors. MTX-folded intermediates were not processed in spinach but the longest (1-167) MTX-folded cyt b2-DHFR construct was processed in soybean, while yeast mitochondria successfully processed even shorter MTX-folded constructs. The MTX-folded precursors were cleaved with high efficiency by purified spinach MPP/bc1 complex. We interpret these results as indicating that the protein import channel is located distantly from the MPP/bc1 complex in plants, and that there is no link between protein translocation and protein processing.  相似文献   

10.
Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 subunit of the ATP synthase (pF1) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondria than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 into intact mitochondria. Import of pF1 through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.  相似文献   

11.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   

12.
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.  相似文献   

13.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

14.
Mitochondria consist of four compartments, the outer membrane, intermembrane space (IMS), inner membrane and the matrix. Most mitochondrial proteins are synthesized as precursors in the cytosol and have to be imported into these compartments. While the protein import machineries of the outer membrane, inner membrane and matrix have been investigated in detail, a specific mitochondrial machinery for import and assembly of IMS proteins, termed MIA, was identified only recently. To date, only a very small number of substrate proteins of the MIA pathway have been identified. The substrates contain characteristic cysteine motifs, either a twin Cx(3)C or a twin Cx(9)C motif. The largest MIA substrates known possess a molecular mass of 11 kDa, implying that this new import pathway has a very small size limit. Here, we have compiled a list of Saccharomyces cerevisiae proteins with a twin Cx(9)C motif and identified three IMS proteins that were previously localized to incorrect cellular compartments by tagging approaches. Mdm35, Mic14 (YDR031w) and Mic17 (YMR002w) require the two essential subunits, Mia40 and Erv1, of the MIA machinery for their localization in the mitochondrial IMS. With a molecular mass of 14 kDa and 17 kDa, respectively, Mic14 and Mic17 are larger than the known MIA substrates. Remarkably, the precursor of Erv1 itself is imported via the MIA pathway. As Erv1 has a molecular mass of 22 kDa and a twin Cx(2)C motif, this study demonstrates that the MIA pathway can transport substrates that are twice as large as the substrates known to date and is not limited to proteins with twin Cx(3)C or Cx(9)C motifs. However, tagging of MIA substrates can interfere with their subcellular localization, indicating that the proper localization of mitochondrial IMS proteins requires the characterization of the authentic untagged proteins.  相似文献   

15.
A giant mitochondrion that branches and connects as a single mitochondrion in a cell has been observed during specific phases of the cell cycle of unicellular green algae, but has not been observed in multicellular algae. The genus Ulva is a green macroalga in which the haploid and diploid phases are isomorphic and its gametes develop parthenogenetically. The existence or absence of the giant mitochondrion, and its behavior in Ulva partita, were investigated using a parthenogenesis system. To observe the parthenogenesis of gametes and the dynamics of mitochondria by fluorescence microscopy, we developed an experimental system for culturing and observing U. partita on cover slips: gametes were suspended in 6‐well plates filled with artificial seawater, and cover slips were placed on the well bottoms. The gametes settled on the cover slips as spherical cells (1‐cell S phase). These cells grew into larger cells, losing their eyespot (1‐cell L phase), and developed into multicellular thalli. Gene introduction using the polyethylene glycol (PEG) method is available with transformation efficiencies of 9.0–15.1%. Transformation was performed using a plasmid encoding green fluorescent protein (GFP) fused to the mitochondrial targeting sequence, and mitochondria were labeled by GFP fluorescence. This revealed a string‐shaped giant mitochondrion in a cell of the 1‐cell S phase. In the 1‐cell L phase, a reticular mitochondrion was observed. After the initiation of cell division, the reticular mitochondrion was fragmented, and small oval mitochondria were observed in the 5‐cell phase.  相似文献   

16.
About 5% of the total cellular protein synthesized in exponentially dividing PC12 phenochromocytoma cells remains insoluble after extractions with aqueous buffer, nonionic detergent, and a strong denaturant, 6 M urea. Single- and double-radiolabel pulse-chase labeling experiments with radioactive leucine indicate that for much of the 6 M urea-insoluble protein there is either a lag between its synthesis and deposition in a urea-insoluble compartment and/or the urea-insoluble protein is comparatively stabilized from destruction. Given the doubling time of PC12 cells, much of the long-lived and urea-insoluble protein of PC12 cells is passed on for at least three generations. Electrophoretic analyses show there are many species of long-lived proteins in the 6 M urea-insoluble fraction, displayed as a near continuum of subunit molecular weights.  相似文献   

17.
We found that four type II NAD(P)H dehydrogenases (ND) in Arabidopsis are targeted to two locations in the cell; NDC1 was targeted to mitochondria and chloroplasts, while NDA1, NDA2 and NDB1 were targeted to mitochondria and peroxisomes. Targeting of NDC1 to chloroplasts as well as mitochondria was shown using in vitro and in vivo uptake assays and dual targeting of NDC1 to plastids relies on regions in the mature part of the protein. Accumulation of NDA type dehydrogenases to peroxisomes and mitochondria was confirmed using Western blot analysis on highly purified organelle fractions. Targeting of ND proteins to mitochondria and peroxisomes is achieved by two separate signals, a C-terminal signal for peroxisomes and an N-terminal signal for mitochondria.  相似文献   

18.
19.
The tumor necrosis factor (TNF)‐α converting enzyme (TACE) can cleave the cell‐surface ectodomain of the amyloid‐β precursor protein (APP), thus decreasing the generation of amyloid‐β (Aβ) by cultured non‐neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non‐neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular‐molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Aβ plaques and TACE, we found that TACE‐positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Aβ formation. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 40–46, 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号