首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liu W  Fang L  Li M  Li S  Guo S  Luo R  Feng Z  Li B  Zhou Z  Shao G  Chen H  Xiao S 《PloS one》2012,7(4):e35698
Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.  相似文献   

3.
Identifying the G + C difference between closely related bacterial species or between different strains of the same species is one of the first steps in understanding the evolutionary mechanisms accounting for the differences observed among bacterial species. The G + C content can be one of the most important factors in the evolution of genomic structures. In this paper, we describe a new method for detecting an initial stage of differentiation of the G + C content at the third codon base position between two strains of the same bacterial species. We apply this method to the two strains of Helicobacter pylori. A group of genes is detected with large variations of G + C in the third positions—apparently genes of early response to pressures of changing G + C. We discuss our findings from the viewpoint of genomic evolution. Received: 26 February 2001 / Accepted: 16 May 2001  相似文献   

4.
5.
BackgroundGene content differences in human gut microbes can lead to inter-individual phenotypic variations such as digestive capacity. It is unclear whether gene content variation is caused by differences in microbial species composition or by the presence of different strains of the same species; the extent of gene content variation in the latter is unknown. Unlike pan-genome studies of cultivable strains, the use of metagenomic data can provide an unbiased view of structural variation of gut bacterial strains by measuring them in their natural habitats, the gut of each individual in this case, representing native boundaries between gut bacterial populations. We analyzed publicly available metagenomic data from fecal samples to characterize inter-individual variation in gut bacterial species.ResultsA comparison of 11 abundant gut bacterial species showed that the gene content of strains from the same species differed, on average, by 13% between individuals. This number is based on gene deletions only and represents a lower limit, yet the variation is already in a similar range as observed between completely sequenced strains of cultivable species. We show that accessory genes that differ considerably between individuals can encode important functions, such as polysaccharide utilization and capsular polysaccharide synthesis loci.ConclusionMetagenomics can yield insights into gene content variation of strains in complex communities, which cannot be predicted by phylogenetic marker genes alone. The large degree of inter-individual variability in gene content implies that strain resolution must be considered in order to fully assess the functional potential of an individual''s human gut microbiome.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0646-9) contains supplementary material, which is available to authorized users.  相似文献   

6.
The occurrence of bacteria with a reduced genome, such as that found in Mycoplasmas, raises the question as to which genes should be enough to guarantee the genomic stability indispensable for the maintenance of life. The aim of this work was to compare nine Mycoplasma genomes in regard to DNA repair genes. An in silico analysis was done using six Mycoplasma species, whose genomes are accessible at GenBank, and M. synoviae, and two strains of M. hyopneumoniae, whose genomes were recently sequenced by The Brazilian National Genome Project Consortium and Southern Genome Investigation Program (Brazil) respectively. Considering this reduced genome model, our comparative analysis suggests that the DNA integrity necessary for life can be primarily maintained by nucleotide excision repair (NER), which is the only complete repair pathway. Furthermore, some enzymes involved with base excision repair (BER) and recombination are also present and can complement the NER activity. The absence of RecR and RecO-like ORFs was observed only in M. genitalium and M. pneumoniae, which can be involved with the conservation of gene order observed between these two species. We also obtained phylogenetic evidence for the recent acquisition of the ogt gene in M. pulmonis and M. penetrans by a lateral transference event. In general, the presence or nonexistence of repair genes is shared by all species analyzed, suggesting that the loss of the majority of repair genes was an ancestral event, which occurred before the divergence of the Mycoplasma species.  相似文献   

7.
8.
9.
Overlapping genes are defined, in this paper, as a pair of adjacent genes whose coding regions are partly overlapping. We systematically analyzed all overlapping genes in the genomes of two closely related species: Mycoplasma genitalium and Mycoplasma pneumoniae. Careful comparisons were made for homologous genes that are overlapped in one species but not in the other. This comparative analysis allows us to propose a model of how overlapping genes emerged in the course of evolution. It was found that overlapping genes were generated primarily due to the loss of a stop codon in either gene, in many cases, the absence of which resulted in elongation of the 3' end of the gene's coding region. More specifically, the loss of the stop codon took place as a result of the following events: deletion of the stop codon (64.4%), point mutation at the stop codon (4.4%), and frame shift at the end of the coding region (6.7%). Overlapping genes, in a sense, can be thought of as the results of evolutionary pressure to minimize genome size. However, our analysis indicates that many overlapping genes, at least in the genomes of M.genitalium and M.pneumoniae, are due to incidental elongation of the coding regions.  相似文献   

10.
11.
The present study describes the use of microarray technology for rapid identification and differentiation of Mycoplasma mycoides subsp. mycoides from other mycoplasmas that may be pathogenic to ruminants, including those of the Mycoplasma mycoides cluster, genetically and antigenically strictly correlated with Mycoplasma mycoides subsp. mycoides. A microarray containing genetic sequences of 55 different bacterial species from Acholeplasma, Mycoplasma, Spiroplasma and Ureaplasma genera was constructed. Sequences to genes of interest were collected in FASTA format from NCBI. The collected sequences were processed with OligoPicker software. Oligonucleotides were then checked for their selectivity with BLAST searches in GenBank. The microarray was tested with ATCC/NCTC strains of Mycoplasma spp. of veterinary importance in ruminants including Mycoplasma belonging to the mycoides cluster as well as Mycoplasma mycoides subsp. mycoides and Mycoplasma mycoides subsp. capri field strains. The results showed that but one ATCC/NCTC reference strains hybridized with their species-specific sequences showed a profile/signature different and distinct from each other. The heat-map of the hybridization results for the nine genes interrogated for Mycoplasma mycoides subsp. mycoides demonstrated that the reference strain Mycoplasma mycoides subsp mycoides PG1 was positive for all of the gene sequences spotted on the microarray. CBPP field, vaccine and reference strains were all typed to be M. mycoides subsp. mycoides, and seven of the nine strains gave positive hybridization results for all of the nine genes. Two Italian strains were negative for some of the genes. Comparison with non-Mycoplasma mycoides subsp. mycoides reference strains showed some positive signals or considerable homology to Mycoplasma mycoides subsp. mycoides genes. As expected, some correlations were observed between the strictly genetically and antigenically correlated Mycoplasma mycoides subsp. mycoides and Mycoplasma mycoides subsp. capri strains. Specifically, we observed that some Italian Mycoplasma mycoides subsp. mycoides strains were positive for two out of the three Mycoplasma mycoides subsp. capri genes, differently from what has been observed for other European or African Mycoplasma mycoides subsp. mycoides strains. This study highlighted the use of microarray technology as a simple and effective method for a single-step identification and differentiation of Mycoplasma mycoides subsp. mycoides from other mycoplasmas that may be pathogenic to ruminants, including those of the Mycoplasma mycoides cluster, genetically and antigenically strictly correlated with Mycoplasma mycoides subsp. mycoides. The opportunity to discriminate several mycoplasmas in a single analysis enhances diagnostic rapidity and may represent a useful tool to screen occasionally mycoplasmas affecting animal farming in territories where diagnostic laboratory support is limited. The heat-map of the hybridization results of the comparative genomic hybridizations DNA-designed chip clearly indicates that the microarray performs well for the identification of the tested Mycoplasma mycoides subsp. mycoides reference and field strains, discriminating them from other mycoplasmas.  相似文献   

12.
On the basis of information from computer-assisted sequence comparison of the Mycoplasma pneumoniae 16S ribosomal RNA (rRNA) sequences with sequences from various other mycoplasmal and bacterial species, we constructed M. pneumoniae-specific oligonucleotide probes complementary to variable regions in the 16S rRNA molecule. Using a DNA/RNA dot blot hybridization procedure, it was possible to detect less than 1 X 10(3) mycoplasmas. This test is a most sensitive assay for species-specific detection of bacteria. It can easily be adapted for detection and identification of other bacterial species and may have wide medical and industrial application.  相似文献   

13.
The complete genomic sequence of an intracellular bacterial pathogen, Mycoplasma penetrans HF-2 strain, was determined. The HF-2 genome consists of a 1 358 633 bp single circular chromosome containing 1038 predicted coding sequences (CDSs), one set of rRNA genes and 30 tRNA genes. Among the 1038 CDSs, 264 predicted proteins are common to the Mycoplasmataceae sequenced thus far and 463 are M.penetrans specific. The genome contains the two-component system but lacks the essential cellular gene, uridine kinase. The relatively large genome of M.penetrans HF-2 among mycoplasma species may be accounted for by both its rich core proteome and the presence of a number of paralog families corresponding to 25.4% of all CDSs. The largest paralog family is the p35 family, which encodes surface lipoproteins including the major antigen, P35. A total of 44 genes for p35 and p35 homologs were identified and 30 of them form one large cluster in the chromosome. The genetic tree of p35 paralogs suggests the occurrence of dynamic chromosomal rearrangement in paralog formation during evolution. Thus, M.penetrans HF-2 may have acquired diverse repertoires of antigenic variation-related genes to allow its persistent infection in humans.  相似文献   

14.
We have developed a novel and easily performed procedure for the targeted excision, cloning, and broad-host-range transfer of large bacterial genomic DNA segments. This procedure, called Vector-mediated excision and Capture (VEX-Capture), represents a new molecular tool for the convenient manipulation and exchange of large (20-40+ kb) bacterial genomic fragments. VEX-Capture utilizes lox/Cre-mediated site-specific recombination for excision of the targeted genomic segment and homologous recombination for cloning of the excised DNA section onto a self-transmissible, broad-host-range IncP plasmid. The "captured" genomic DNA segment can then be transferred to a wide variety of Gram-negative hosts for basic research and bioengineering purposes. To demonstrate the utility and function of VEX-Capture, we have excised and cloned three separate genomic islands from the Salmonella typhimurium chromosome ranging in size from 26.7 to 40.0 kb. To test the ability of these islands to be established in different bacterial hosts, we transferred them to six other Gram-negative species and monitored their establishment via phenotypic and molecular analysis. RT-PCR was used to assay the expression of selected S. typhimurium island genes in the different species. This analysis led to the discovery that an island-encoded master regulator of S. typhimurium virulence functions is expressed in a species-specific manner. Our results demonstrate the potential for VEX-Capture to be used as a convenient genetic technique for fundamental biological applications in a wide variety of bacterial species.  相似文献   

15.
Homologous recombination between repeated DNA elements in the genomes of Mycoplasma species has been hypothesized to be a crucial causal factor in sequence variation of antigenic proteins at the bacterial surface. To investigate this notion, studies were initiated to identify and characterize the proteins that form part of the homologous DNA recombination machinery in Mycoplasma pneumoniae as well as Mycoplasma genitalium. Among the most likely participants of this machinery are homologs of the Holliday junction migration motor protein RuvB. In both M. pneumoniae and M. genitalium, genes have been identified that have the capacity to encode RuvB homologs (MPN536 and MG359, respectively). Here, the characteristics of the MPN536- and MG359-encoded proteins (the RuvB proteins from M. pneumoniae strain FH [RuvB(FH)] and M. genitalium [RuvB(Mge)], respectively) are described. Both RuvB(FH) and RuvB(Mge) were found to have ATPase activity and to bind DNA. In addition, both proteins displayed divalent cation- and ATP-dependent DNA helicase activity on partially double-stranded DNA substrates. The helicase activity of RuvB(Mge), however, was significantly lower than that of RuvB(FH). Interestingly, we found RuvB(FH) to be expressed exclusively by subtype 2 strains of M. pneumoniae. In strains belonging to the other major subtype (subtype 1), a version of the protein is expressed (the RuvB protein from M. pneumoniae strain M129 [RuvB(M129)]) that differs from RuvB(FH) in a single amino acid residue (at position 140). In contrast to RuvB(FH), RuvB(M129) displayed only marginal levels of DNA-unwinding activity. These results demonstrate that M. pneumoniae strains (as well as closely related Mycoplasma spp.) can differ significantly in the function of components of their DNA recombination and repair machinery.  相似文献   

16.
The microbial pan-genome   总被引:1,自引:0,他引:1  
A decade after the beginning of the genomic era, the question of how genomics can describe a bacterial species has not been fully addressed. Experimental data have shown that in some species new genes are discovered even after sequencing the genomes of several strains. Mathematical modeling predicts that new genes will be discovered even after sequencing hundreds of genomes per species. Therefore, a bacterial species can be described by its pan-genome, which is composed of a "core genome" containing genes present in all strains, and a "dispensable genome" containing genes present in two or more strains and genes unique to single strains. Given that the number of unique genes is vast, the pan-genome of a bacterial species might be orders of magnitude larger than any single genome.  相似文献   

17.
We have determined the nucleotide (nt) and deduced amino acid (aa) sequence of a unique 115-kDa Mycoplasma hyorhinis protein (P115) with an N-terminal region containing a highly conserved consensus sequence characteristics of nt-binding domains of several ATPase and GTPase enzymes. However, P115 lacked additional conserved features characteristic of some classes of nt-binding proteins. Based on the hydropathy profile of the deduced aa sequence, the absence of a leader peptide, its exclusive partitioning into the hydrophilic phase during Triton X-114 phase fractionation of M. hyorhinis, and immunofluorescence analysis indicating no surface-exposed domains, it was concluded that P115 is a cytoplasmic protein lacking intrinsic membrane interaction. M. hyorhinis P115 appears to be a species-specific protein, since it was not detected in any other mycoplasmal or bacterial species examined with specific antibody or genomic probes. Since genetic systems for direct mutational analysis are currently unavailable in this organism, sequence analysis provides critical information in establishing the possible function of this protein. Moreover, the nt sequence encoding P115 reported here supports a previously proposed model, based on synthesis of P115-related proteins in Escherichia coli, suggesting that multiple polypeptide products can be generated from mycoplasma genes by promiscuous translation initiation in this heterologous expression system.  相似文献   

18.
alpha-L-Arabinofuranosidases (AFases; EC 3.2.1.55) are exo-type enzymes, which hydrolyze terminal nonreducing arabinose residues from various polysaccharides such as arabinan and arabinoxylan. Genome-wide BLAST search showed that various bacterial strains possess the putative AFase genes with well-conserved motif sequences at the nucleotide and amino acid sequence levels. In this study, two sets of degenerate PCR primers were designed and tested to detect putative AFase genes, based on their three highly conserved amino acid blocks (PGGNFV, GNEMDG, and DEWNVW). Among 20 Bacillus-associated species, 13 species were revealed to have putative AFase genes in their genome and they share over 67% of amino acid identities with each other. Based on the partial sequence obtained from an isolate, an AFase from Geobacillus sp. was cloned and expressed in E. coli. Enzymatic characterization has verified that the resulting enzyme corresponds to a typical AFase. Accordingly, degenerate PCR primers developed in this work can be used for fast, easy, and specific detection and isolation of putative AFase genes from bacterial cells.  相似文献   

19.
Plasmids contain a backbone of core genes that remains relatively stable for long evolutionary periods, making sense to speak about plasmid species. The identification and characterization of the core genes of a plasmid species has a special relevance in the study of its epidemiology and modes of transmission. Besides, this knowledge will help to unveil the main routes that genes, for example antibiotic resistance (AbR) genes, use to travel from environmental reservoirs to human pathogens. Global dissemination of multiple antibiotic resistances and virulence traits by plasmids is an increasing threat for the treatment of many bacterial infectious diseases. To follow the dissemination of virulence and AbR genes, we need to identify the causative plasmids and follow their path from reservoirs to pathogens. In this review, we discuss how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in Gammaproteobacteria, as well as their cargo genes, in complex ecosystems. Once the dissemination routes are known, designing antidissemination drugs and testing their efficacy will become feasible. We discuss in this review how the existing diversity in plasmid genetic structures gives rise to a large diversity in propagation strategies. We would like to propose that, by using an identification methodology based on plasmid mobility types, we can follow the propagation routes of most plasmids in ?-proteobacteria, as well as their cargo genes, in complex ecosystems.  相似文献   

20.
Whatever else they should share, strains of bacteria assigned to the same species should have house-keeping genes that are similar in sequence. Single gene sequences (or rRNA gene sequences) have very few informative sites to resolve the strains of closely related species, and relationships among similar species may be confounded by interspecies recombination. A more promising approach (multilocus sequence analysis, MLSA) is to concatenate the sequences of multiple house-keeping loci and to observe the patterns of clustering among large populations of strains of closely related named bacterial species. Recent studies have shown that large populations can be resolved into non-overlapping sequence clusters that agree well with species assigned by the standard microbiological methods. The use of clustering patterns to inform the division of closely related populations into species has many advantages for poorly studied bacteria (or to re-evaluate well-studied species), as it provides a way of recognizing natural discontinuities in the distribution of similar genotypes. Clustering patterns can be used by expert groups as the basis of a pragmatic approach to assigning species, taking into account whatever additional data are available (e.g. similarities in ecology, phenotype and gene content). The development of large MLSA Internet databases provides the ability to assign new strains to previously defined species clusters and an electronic taxonomy. The advantages and problems in using sequence clusters as the basis of species assignments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号