首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular prion protein (PrP(c)) plays a crucial role in the pathogenesis of prion diseases, but its physiological function is far from understood. Several candidate functions have been proposed including binding and internalization of metal ions, a superoxide dismutase-like activity, regulation of cellular antioxidant activities, and signal transduction. The transmembrane (TM1) region of PrP(c) (residues 110-135) is particularly interesting because of its very high evolutionary conservation. We investigated a possible role of TM1 in the antioxidant defense, by assessing the impact of overexpressing wt-PrP or deletion mutants in N(2)A mouse neuroblastoma cells on intracellular reactive oxygen species (ROS) levels. Under conditions of oxidative stress, intracellular ROS levels were significantly lowered in cells overexpressing either wild-type PrP(c) (wt-PrP) or a deletion mutant affecting TM1 (Delta8TM1-PrP), but, as expected, not in cultures overexpressing a deletion mutant lacking the octapeptide region (Deltaocta-PrP). Overexpression of wt-PrP, Delta8TM1-PrP, or Deltaocta-PrP did not affect basal ROS levels. Interestingly, the mitochondrial membrane potential was significantly lowered in Deltaocta-PrP-transfected cultures in the absence of oxidative stress. We conclude that the protective effect of PrP(c) against oxidative stress involves the octarepeat region but not the TM1 domain nor the high-affinity copper binding site described for human residues His96/His111.  相似文献   

2.
The cellular prion protein (PrPc) plays a crucial role in the pathogenesis of prion diseases, but its physiological function is far from understood. Several candidate functions have been proposed including binding and internalization of metal ions, a superoxide dismutase-like activity, regulation of cellular antioxidant activities, and signal transduction. The transmembrane (TM1) region of PrPc (residues 110–135) is particularly interesting because of its very high evolutionary conservation. We investigated a possible role of TM1 in the antioxidant defense, by assessing the impact of overexpressing wt-PrP or deletion mutants in N2A mouse neuroblastoma cells on intracellular reactive oxygen species (ROS) levels. Under conditions of oxidative stress, intracellular ROS levels were significantly lowered in cells overexpressing either wild-type PrPc (wt-PrP) or a deletion mutant affecting TM1 (Δ8TM1-PrP), but, as expected, not in cultures overexpressing a deletion mutant lacking the octapeptide region (Δocta-PrP). Overexpression of wt-PrP, Δ8TM1-PrP, or Δocta-PrP did not affect basal ROS levels. Interestingly, the mitochondrial membrane potential was significantly lowered in Δocta-PrP-transfected cultures in the absence of oxidative stress. We conclude that the protective effect of PrPc against oxidative stress involves the octarepeat region but not the TM1 domain nor the high-affinity copper binding site described for human residues His96/His111.  相似文献   

3.
ATP-binding cassette transporter A7 (ABCA7) is highly expressed in the brain. Recent genome-wide association studies (GWAS) have identified ABCA7 single nucleotide polymorphisms (SNPs) that increase Alzheimer''s disease (AD) risk, however, the mechanisms by which ABCA7 may control AD risk remain to be fully elucidated. Based on previous research suggesting that certain ABC transporters may play a role in the regulation of neurogenesis, we conducted a study of cell proliferation and neurogenic potential using cellular bromodeoxyuridine (BrdU) incorporation and doublecortin (DCX) immunostaining in adult Abca7 deficient mice and wild-type-like (WT) littermates. In the present study counting of BrdU-positive and DCX-positive cells in an established adult neurogenesis site in the dentate gyrus (DG) indicated there were no significant differences when WT and Abca7 deficient mice were compared. We also measured the area occupied by immunohistochemical staining for BrdU and DCX in the DG and the subventricular zone (SVZ) of the same mice and this confirmed that ABCA7 does not play a significant role in the regulation of cell proliferation or neurogenesis in the adult mouse.  相似文献   

4.
The role of the cytosolic domain of tissue factor (TF) in signal transduction and gene regulation was studied in mice with a targeted deletion of the 18 carboxy-terminal intracellular amino acids. This deletion was introduced in exon 6 along with a floxed neo(R) selection cassette in intron 5 using homologous recombination in embryonic stem cells. Removal of the floxed neo(R) cassette by in vivo Cre-mediated loxP recombination yielded TF(+/deltaCT) and TF(deltaCT/deltaCT) mice. In contrast to TF(-/-) mice, TF(+/deltaCT) and TF(deltaCT/deltaCT) mice displayed normal embryonic development, survival, fertility, and blood coagulation. Factor VIIa or factor Xa stimulation produced similar p44/42 MAPK activation in TF(+/+) and TF(deltaCT/deltaCT) fibroblasts. These data, based on expression of a TF(deltaCT) molecule from the endogenous TF locus, provide conclusive proof that the cytosolic domain of TF is not essential for signal transduction in embryogenesis and in physiological postnatal processes.  相似文献   

5.
Transmissible spongiform encephalopathies in mammals are believed to be caused by PrPSc, the insoluble, oligomeric isoform of the cellular prion protein PrPC. PrPC and the subunits of PrPSc have identical covalent but different tertiary structure. To address the question of whether parts of the structure of PrPC are sufficiently stable to be retained in PrPSc, we have constructed two deletion variants of the C-terminal PrPC domain, PrP(121-231), which is the only part of recombinant PrP with defined tertiary structure. One of the variants, H2-H3, comprises the last two alpha-helices of PrP(121-231) that have been proposed to be preserved in models of PrP(Sc). In the other variant, PrP(121-231)-deltaH1, the first alpha-helix of PrP(121-231) was deleted and replaced by introduction of the beta-turn dipeptide Asn-Gly between the strands of the single beta-sheet of PrP(121-231). Although both deletion constructs still show alpha-helical CD-spectra, they are more disordered and thermodynamically strongly destabilized compared to PrP(121-231), with free energies of folding close to zero. These data demonstrate that the tertiary structure context is critical for the conformation of the segment comprising alpha-helix 2 and 3 in the solution structure of recombinant PrP.  相似文献   

6.
Prion protein (PrP) plays a crucial role in prion disease, but its physiological function remains unclear. Mice with gene deletions restricted to the coding region of PrP have only minor phenotypic deficits, but are resistant to prion disease. We generated double transgenic mice using the Cre-loxP system to examine the effects of PrP depletion on neuronal survival and function in adult brain. Cre-mediated ablation of PrP in neurons occurred after 9 weeks. We found that the mice remained healthy without evidence of neurodegeneration or other histopathological changes for up to 15 months post-knockout. However, on neurophysiological evaluation, they showed significant reduction of afterhyperpolarization potentials (AHPs) in hippocampal CA1 cells, suggesting a direct role for PrP in the modulation of neuronal excitability. These data provide new insights into PrP function. Furthermore, they show that acute depletion of PrP does not affect neuronal survival in this model, ruling out loss of PrP function as a pathogenic mechanism in prion disease and validating therapeutic approaches targeting PrP.  相似文献   

7.
A conformational conversion of the cellular prion protein (PrP(C)) is now recognized as the causal event of fatal neurodegenerative disorders, known as prion diseases. In spite of long-lasting efforts, however, the physiological role of PrP(C) remains unclear. It has been reported that PrP(C) is expressed in various areas of the olfactory system, including the olfactory epithelium, but its precise localization in olfactory sensory neurons (OSNs) is still debated. Here, using immunohistochemistry tools, we have reinvestigated the expression and localization of PrP(C) in the olfactory epithelium of adult congenic mice expressing different PrP(C) amounts, that is, wild-type, PrP-knockout, and transgenic PrP(C)-overexpressing animals. We found that PrP(C) was expressed in OSNs, in which, however, it was unevenly distributed, being detectable at low levels in cell bodies, dendrites and apical layer, and more abundantly in axons. We also studied the involvement of PrP(C) in the response of the olfactory epithelium to odorants, by comparing the electro-olfactograms of the 3 mouse lines subjected to different stimulation protocols. We found no significant difference between the 3 PrP genotypes, supporting previous reports that exclude a direct action of PrP(C) in the early signal transduction activity of the olfactory epithelium.  相似文献   

8.
9.
Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.  相似文献   

10.
We engineered the GLUT1 cDNA to delete C-terminal 12 amino acids of encoded GLUT1 protein. This mutated GLUT1 protein expressed in CHO cells by transfection of its cDNA was demonstrated to reside on the plasma membrane by cell surface labeling technique, and retain the transport activity, similar to that of the wild-type GLUT1. In addition, metabolic labeling of the intact cells with 35S indicated that the half-life of the mutated GLUT1 was not significantly different from that of the wild-type GLUT1. These results suggest that C-terminal 12 amino acids of GLUT1 are not important for the transport activity and the stability of the protein. Taken together with our previous results on the mutant without C-terminal 37 amino acids, the amino acids between the 37th and the 13th from the C-terminus appear to be essential for the transport activity.  相似文献   

11.
The prion protein PrP is a naturally occurring polypeptide that becomes transformed from a normal conformation to that of an aggregated form, characteristic of pathological states in fatal transmissible spongiform conditions such as Creutzfeld-Jacob Disease and Bovine Spongiform Encephalopathy. We report the crystal structure, at 2 A resolution, of residues 123-230 of the C-terminal globular domain of the ARQ allele of sheep prion protein (PrP). The asymmetric unit contains a single molecule whose secondary structure and overall organisation correspond to those structures of PrPs from various mammalian species determined by NMR. The globular domain shows a close association of helix-1, the C-terminal portion of helix-2 and the N-terminal portion of helix-3, bounded by the intramolecular disulphide bond, 179-214. The loop 164-177, between beta2 and helix-2 is relatively well structured compared to the human PrP NMR structure. Analysis of the sheep PrP structure identifies two possible loci for the initiation of beta-sheet mediated polymerisation. One of these comprises the beta-strand, residues 129-131 that forms an intra-molecular beta-sheet with residues 161-163. This strand is involved in lattice contacts about a crystal dyad to generate a four-stranded intermolecular beta-sheet between neighbouring molecules. The second locus involves the region 188-204, which modelling suggests is able to undergo a partial alpha-->beta switch within the monomer. These loci provide sites within the PrPc monomer that could readily give rise to early intermediate species on the pathway to the formation of aggregated PrPSc containing additional intermolecular beta-structure.  相似文献   

12.
《FEBS letters》2014,588(9):1542-1548
Cellular nucleic acid binding protein (CNBP) contains seven zinc finger (ZF) repeats and an arginine and glycine (RG) rich sequence between the first and the second ZF. CNBP interacts with protein arginine methyltransferase PRMT1. Full-length but not RG-deleted or mutated CNBP can be methylated. Treatment with a methylation inhibitor AdOx reduced CNBP methylation, but did not affect the concentrated nuclear localization of CNBP. Nevertheless, arginine methylation of CNBP appeared to interfere with its RNA binding activity. Our findings show that arginine methylation of CNBP in the RG motif did not change the subcellular localization, but regulated its RNA binding activity.Structured summary of protein interactionsPRMT1 binds to CNBP by pull down (View interaction)PRMT1 methylates CNBP by enzymatic study (View interaction)CNBP physically interacts with PRMT1 by anti tag coimmunoprecipitation (View interaction)  相似文献   

13.
14.
Leliveld SR  Stitz L  Korth C 《Biochemistry》2008,47(23):6267-6278
A misfolded conformation of the prion protein (PrP), PrP (Sc), is the essential component of prions, the infectious agents that cause transmissible neurodegenerative diseases. Insertional mutations that lead to an increase in the number of octarepeats (ORs) in PrP are linked to familial human prion disease. In this study, we investigated how expansion of the OR domain causes PrP to favor a prion-like conformation. Therefore, we compared the conformational and aggregation modulating properties of wild-type versus expanded OR domains, either as a fusion construct with the protein G B1 domain (GB1-OR) or as an integral part of full-length mouse PrP (MoPrP). Using circular dichroism spectroscopy, we first demonstrated that ORs are not unfolded but exist as an ensemble of three distinct conformers: polyproline helix-like, beta-turn, and "Trp-related". Domain expansion had little effect on the conformation of GB1-OR fusion proteins. When part of MoPrP however, OR domain expansion changed PrP's folding landscape, not by hampering the production of native alpha-helical monomers but by greatly reducing the propensity to form amyloid and by altering the assembly of misfolded, beta-rich aggregates. These features may relate to subtle pH-dependent conformational differences between wild-type and mutant monomers. In conclusion, we propose that PrP insertional mutations are pathogenic because they enhance specific misfolding pathways of PrP rather than by undermining native folding. This idea was supported by a trial bioassay in transgenic mice overexpressing wild-type MoPrP, where intracerebral injection of recombinant MoPrP with an expanded OR domain but not wild-type MoPrP caused prion disease.  相似文献   

15.
O'Neil KT  Bach AC  DeGrado WF 《Proteins》2000,41(3):323-333
We describe the NMR structure of a deletion mutant of the B1 IgG-binding domain from Group G Streptococcus. The deletion occurs within the last beta-strand of the protein, where it may potentially have a deleterious effect on the stability of the protein if the protein were not able to conformationally adjust to the perturbation. In particular, the deletion changes the registry of the final three residues in the sheet, forcing a polar Thr to be buried in the interior of the protein and exposing a hydrophobic Val to solvent. The deletion could also potentially create a large cavity in the beta-sheet and force the alpha- and gamma-carboxylates of the C-terminal Glu residue into a partially buried region of the sheet. The structure of the mutant illustrates how the conformation of the protein adjusts to the deletion, thereby mitigating some of the potentially deleterious consequences. Although the elements of secondary structure are retained between the mutant and the wt domain, there are multiple small adjustments in the segments connecting secondary structure elements. In particular, a hydrogen bond between the Glu57 carboxylates and two main chain amides is introduced that alters the conformation in the loop connecting the helix to strand 3. In addition, to minimize hydrophobic surface exposure, the turn connecting strands 1 and 2 folds toward the core so that the molecular volume is decreased.  相似文献   

16.
We have studied the DNA binding properties of a polypeptide consisting of the carboxyl terminal 37% of UL9, the herpes simplex virus type 1 (HSV-1) origin of replication binding protein. Using a Sindbis virus expression system, we expressed and partially purified this truncated form of UL9 (UL9CT) which contains the site-specific DNA binding domain. UL9CT specifically recognized UL9 binding sites on a 200 base pair DNA fragment containing the HSV origin ori(s) and appeared to bind as a dimer to each site. DNAse I footprint analysis showed that UL9CT protected the two high affinity binding sites of ori(s), but unlike full-length UL9, UL9CT did not induce a conformational change in the origin. Addition of anti-UL9CT antibody to the UL9CT-origin complex, however, caused a conformational change in the origin to be evident. Our results suggest that a domain, or domains, in the amino terminus are necessary for a UL9-induced origin conformational change to occur and that UL9-UL9 interactions between binding sites are involved.  相似文献   

17.
beta-Secretase (BACE) is a membrane-bound aspartyl protease that cleaves the amyloid precursor protein to generate the N terminus of the amyloid beta peptide. BACE is expressed as a precursor protein containing Pre, Pro, protease, transmembrane, and cytosolic domains. A soluble BACE derivative (PreProBACE460) that is truncated between the protease and transmembrane domains was produced by baculovirus-mediated expression. ProBACE460 was purified from conditioned media of infected insect cells using immobilized concanavalin A and immobilized BACE inhibitor, P10-P4' Stat(Val). Furin cleaves ProBACE460 between the Pro and protease regions to generate mature BACE460. The k(cat)/K(m) of ProBACE460 when assayed with a polypeptide substrate is only 2.3-fold less than that of BACE460. This finding and the similar inhibitory potency of P10-P4' Stat(Val) for ProBACE460 and BACE460 suggest that the Pro domain has little effect on the BACE active site. Exposure of ProBACE460 to guanidine denaturation/renaturation results in a 7-fold higher recovery of BACE activity than when BACE460 is similarly treated. The presence of free BACE Pro peptide during renaturation of BACE460 but not ProBACE460 increases recovery of activity. These findings show that the Pro domain in ProBACE460 does not suppress activity as in a strict zymogen but does appear to facilitate proper folding of an active protease domain.  相似文献   

18.
Cholesterol homeostasis is of emerging therapeutic importance for Alzheimer's disease (AD). Agonists of liver-X-receptors (LXRs) stimulate several genes that regulate cholesterol homeostasis, and synthetic LXR agonists decrease neuropathological and cognitive phenotypes in AD mouse models. The cholesterol transporter ABCG1 is LXR-responsive and highly expressed in brain. In vitro, conflicting reports exist as to whether ABCG1 promotes or impedes Abeta production. To clarify the in vivo roles of ABCG1 in Abeta metabolism and brain cholesterol homeostasis, we assessed neuropathological and cognitive outcome measures in PDAPP mice expressing excess transgenic ABCG1. A 6-fold increase in ABCG1 levels did not alter Abeta, amyloid, apolipoprotein E levels, cholesterol efflux, or cognitive performance in PDAPP mice. Furthermore, endogenous murine Abeta levels were unchanged in both ABCG1-overexpressing or ABCG1-deficient mice. These data argue against a direct role for ABCG1 in AD. However, excess ABCG1 is associated with decreased levels of sterol precursors and increased levels of SREBP-2 and HMG-CoA-reductase mRNA, whereas deficiency of ABCG1 leads to the opposite effects. Although functions for ABCG1 in cholesterol efflux and Abeta metabolism have been proposed based on results with cellular model systems, the in vivo role of this enigmatic transporter may be largely one of regulating the sterol biosynthetic pathway.  相似文献   

19.
Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation of a polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap formation; thus the defective contract ring. In addition, we correlate active Cdc42 dynamics with its function during polar body emission and find a relationship between Cdc42 and polarity, as well as polar body emission, in mouse oocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号