首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The checkpoint kinase 1 (Chk1) preserves genome integrity when replication is performed on damaged templates. Recently, Chk1 has also been implicated in regulating different aspects of unperturbed S phase. Using mammalian and avian cells with compromised Chk1 activity, we show that an increase in active replicons compensates for inefficient DNA polymerisation. In the absence of damage, loss of Chk1 activity correlates with the frequent stalling and, possibly, collapse of active forks and activation of adjacent, previously suppressed, origins. In human cells, super-activation of replication origins is restricted to pre-existing replication factories. In avian cells, in contrast, Chk1 deletion also correlates with the super-activation of replication factories and loss of temporal continuity in the replication programme. The same phenotype is induced in wild-type avian cells when Chk1 or ATM/ATR is inhibited. These observations show that Chk1 regulates replication origin activation and contributes to S-phase progression in somatic vertebrate cells.  相似文献   

3.
4.
5.
6.
Site-specific initiation of DNA replication is a conserved function in all organisms. In Escherichia coli and Saccharomyces cerevisiae, DNA replication origins are sequence specific, but in multicellular organisms, origins are not so clearly defined. In this article, I present a model of origin specification by epigenetic mechanisms that allows the establishment of stable chromatin domains, which are characterized by autonomous replication. According to this model, origins of DNA replication help to establish domains of gene expression for the generation of cell diversity.  相似文献   

7.
The Mrc1 and Tof1 proteins are conserved throughout evolution, and in budding yeast they are known to associate with the MCM helicase and regulate the progression of DNA replication forks. Previous work has shown that Mrc1 is important for the activation of checkpoint kinases in responses to defects in S phase, but both Mrc1 and Tof1 also regulate the normal process of chromosome replication. Here, we show that these two important factors control the normal progression of DNA replication forks in distinct ways. The rate of progression of DNA replication forks is greatly reduced in the absence of Mrc1 but much less affected by loss of Tof1. In contrast, Tof1 is critical for DNA replication forks to pause at diverse chromosomal sites where nonnucleosomal proteins bind very tightly to DNA, and this role is not shared with Mrc1.  相似文献   

8.
Highlights? An unstable MCM2-7 complex results in a loss of dormant origins in Mcm4Chaos3 cells ? A loss of dormant origins impairs stalled fork recovery in unchallenged S phase ? A loss of dormant origins increases replication intermediates in prophase ? Replication intermediates in M phase are a likely cause of chromosome instability  相似文献   

9.
Chk1 protein kinase maintains replication fork stability in metazoan cells in response to DNA damage and DNA replication inhibitors. Here, we have employed DNA fiber labeling to quantify, for the first time, the extent to which Chk1 maintains global replication fork rates during normal vertebrate S phase. We report that replication fork rates in Chk1−/− chicken DT40 cells are on average half of those observed with wild-type cells. Similar results were observed if Chk1 was inhibited or depleted in wild-type DT40 cells or HeLa cells by incubation with Chk1 inhibitor or small interfering RNA. In addition, reduced rates of fork extension were observed with permeabilized Chk1−/− cells in vitro. The requirement for Chk1 for high fork rates during normal S phase was not to suppress promiscuous homologous recombination at replication forks, because inhibition of Chk1 similarly slowed fork progression in XRCC3−/− DT40 cells. Rather, we observed an increased number of replication fibers in Chk1−/− cells in which the nascent strand is single-stranded, supporting the idea that slow global fork rates in unperturbed Chk1−/− cells are associated with the accumulation of aberrant replication fork structures.  相似文献   

10.
ARS replication during the yeast S phase   总被引:43,自引:0,他引:43  
A 1.45 kb circular plasmid derived from yeast chromosome IV contains the autonomous replication element called ARS1. Isotope density transfer experiments show that each plasmid molecule replicates once each S phase, with initiation depending on two genetically defined steps required for nuclear DNA replication. A density transfer experiment with synchronized cells demonstrates that the ARS1 plasmid population replicates early in the S phase. The sequences adjacent to ARS1 on chromosome IV also initiate replication early, suggesting that the ARS1 plasmid contains information which determines its time of replication. The times of replication for two other yeast chromosome sequences, ARS2 and a sequence referred to as 1OZ, indicate that the temporal order of replication is ARS1 leads to ARS2 leads to 1OZ. These experiments show directly that specific chromosome regions replicate at specific times during the yeast S phase. If ARS elements are origins of chromosome replication, then the experiment reveals times of activation for two origins.  相似文献   

11.
Bovine papillomavirus (BPV) DNA has been reported to restrict its own replication and that of the lytic simian virus 40 (SV40) origin to one initiation event per molecule per S phase, which suggests BPV DNA replication as a model for cellular chromosome replication. Suppression of the SV40 origin required two cis-acting BPV sequences (NCOR-1 and -2) and one trans-acting BPV protein. The results presented in this paper confirm the presence of two NCOR sequences in the BPV genome that can suppress polyomavirus (PyV) as well as SV40 origin-dependent DNA replication as much as 40-fold. However, in contrast to results of previous studies on SV40, most of the suppression of the PyV origin was due to NCOR-1, a 512-bp sequence that functioned independently of distance or orientation with respect to the PyV origin and that was not required for BPV DNA replication. Moreover, NCOR-1 alone or together with NCOR-2 did not restrict the ability of the PyV ori to reinitiate replication within a single S phase and did not require any BPV protein to exert suppression. Furthermore, NCOR-1 did not suppress BPV origin-dependent DNA replication except in the presence of PyV large tumor antigen (T-ag). Since NCOR-1 suppression of PyV origin activity also varied with T-ag concentration, suppression of origins by NCOR sequences appeared to require papovavirus T-ag. Therefore, it is unlikely that NCOR sequences are involved in regulating BPV DNA replication. When these results are taken together with those from other laboratories, BPV appears to be a slowly replicating version of papovaviruses rather than a model for origins of DNA replication in eukaryotic cell chromosomes.  相似文献   

12.
We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication.  相似文献   

13.
The localization of replication origins on ARS plasmids in S. cerevisiae   总被引:157,自引:0,他引:157  
B J Brewer  W L Fangman 《Cell》1987,51(3):463-471
Replication intermediates from the yeast 2 microns plasmid and a recombinant plasmid containing the yeast autonomous replication sequence ARS1 have been analyzed by two-dimensional agarose gel electrophoresis. Plasmid replication proceeds through theta-shaped (Cairns) intermediates, terminating in multiply interlocked catenanes that are resolved during S phase to monomer plasmids. Restriction fragments derived from the Cairns forms contain replication forks and bubbles that behave differently from one another when subjected to high voltage and agarose concentrations. The two-dimensional gel patterns observed for different restriction fragments from these two plasmids indicate that in each plasmid there is a single, specific origin of replication that maps, within the limits of our resolution, to the ARS element. Our results strongly support the long-standing assumption that in Saccharomyces cerevisiae an ARS is an origin of replication.  相似文献   

14.
15.
16.
17.
18.
When DNA replication is slowed down, normally dormant replication origins are activated. Recent work demonstrates that cells adapt by changing the organization of chromatin loops and maintaining the new pattern of origin use in subsequent cell cycles.  相似文献   

19.
A novel cloning strategy for sequences comprising mammalian replication origins, described by Mesner et al. (2006) in a recent issue of Molecular Cell, utilizes an origin trapping assay in which replication bubbles are selectively retained in agarose due to their circular nature.  相似文献   

20.
Because of the complexity of higher eukaryotic genomes and the lack of a reliable autonomously replicating sequence (ARS) assay for isolating potential replicators, the identification of origins has proven to be extremely challenging and time consuming. We have developed a new origin-trapping method based on the partially circular nature of restriction fragments containing replication bubbles and have prepared a library of approximately 1,000 clones from early S phase CHO cells. When 15 randomly selected clones were analyzed by a stringent two-dimensional (2D) gel replicon mapping method, all were shown to correspond to active, early firing origins. Furthermore, most of these appear to derive from broad zones of potential sites, and the five that were analyzed in a time-course study are all inefficient. This bubble-trapping scheme will allow the construction of comprehensive origin libraries from any complex genome so that their natures and distributions vis-a-vis other chromosomal markers can be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号