首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
COPII coat assembly and selective export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
The coat protein complex II (COPII) generates transport vesicles that mediate protein transport from the endoplasmic reticulum (ER). Recent structural and biochemical studies have suggested that the COPII coat is responsible for direct capture of membrane cargo proteins and for the physical deformation of the ER membrane that drives the transport vesicle formation. The COPII-coated vesicle formation at the ER membrane is triggered by the activation of the Ras-like small GTPase Sar1 by GDP/GTP exchange, and activated Sar1 in turn promotes COPII coat assembly. Subsequent GTP hydrolysis by Sar1 leads to disassembly of the coat proteins, which are then recycled for additional rounds of vesicle formation. Thus, the Sar1 GTPase cycle is thought to regulate COPII coat assembly and disassembly. Emerging evidence suggests that the cargo proteins modulate the Sar1 GTP hydrolysis to coordinate coat assembly with cargo selection. Here, I discuss the possible roles of the GTP hydrolysis by Sar1 in COPII coat assembly and selective uptake of cargo proteins into transport vesicles.  相似文献   

2.
Rab1 is a small GTPase regulating vesicular traffic between early compartments of the secretory pathway. To explore the role of rab1 we have analyzed the function of a mutant (rab1a[S25N]) containing a substitution which perturbs Mg2+ coordination and reduces the affinity for GTP, resulting in a form which is likely to be restricted to the GDP-bound state. The rab1a(S25N) mutant led to a marked reduction in protein export from the ER in vivo and in vitro, indicating that a guanine nucleotide exchange protein (GEP) is critical for the recruitment of rab1 during vesicle budding. The mutant protein required posttranslational isoprenylation for inhibition and behaved as a competitive inhibitor of wild-type rab1 function. Both rab1a and rab1b (92% identity) were able to antagonize the inhibitory activity of the rab1a(S25N) mutant, suggesting that these two isoforms are functionally interchangeable. The rab1 mutant also inhibited transport between Golgi compartments and resulted in an apparent loss of the Golgi apparatus, suggesting that Golgi integrity is coupled to rab1 function in vesicular traffic.  相似文献   

3.
An adaptable standard for protein export from the endoplasmic reticulum   总被引:2,自引:0,他引:2  
Wiseman RL  Powers ET  Buxbaum JN  Kelly JW  Balch WE 《Cell》2007,131(4):809-821
To provide an integrated view of endoplasmic reticulum (ER) function in protein export, we have described the interdependence of protein folding energetics and the adaptable biology of cellular protein folding and transport through the exocytic pathway. A simplified treatment of the protein homeostasis network and a formalism for how this network of competing pathways interprets protein folding kinetics and thermodynamics provides a framework for understanding cellular protein trafficking. We illustrate how folding and misfolding energetics, in concert with the adjustable biological capacities of the folding, degradation, and export pathways, collectively dictate an adaptable standard for protein export from the ER. A model of folding for export (FoldEx) establishes that no single feature dictates folding and transport efficiency. Instead, a network view provides insight into the basis for cellular diversity, disease origins, and protein homeostasis, and predicts strategies for restoring protein homeostasis in protein-misfolding diseases.  相似文献   

4.
We have examined the fate of Golgi membranes during mitotic inheritance in animal cells using four-dimensional fluorescence microscopy, serial section reconstruction of electron micrographs, and peroxidase cytochemistry to track the fate of a Golgi enzyme fused to horseradish peroxidase. All three approaches show that partitioning of Golgi membranes is mediated by Golgi clusters that persist throughout mitosis, together with shed vesicles that are often found associated with spindle microtubules. We have been unable to find evidence that Golgi membranes fuse during the later phases of mitosis with the endoplasmic reticulum (ER) as a strategy for Golgi partitioning (Zaal, K.J., C.L. Smith, R.S. Polishchuk, N. Altan, N.B. Cole, J. Ellenberg, K. Hirschberg, J.F. Presley, T.H. Roberts, E. Siggia, et al. 1999. Cell. 99:589-601) and suggest that these results, in part, are the consequence of slow or abortive folding of GFP-Golgi chimeras in the ER. Furthermore, we show that accurate partitioning is accomplished early in mitosis, by a process of cytoplasmic redistribution of Golgi fragments and vesicles yielding a balance of Golgi membranes on either side of the metaphase plate before cell division.  相似文献   

5.
Models of Golgi apparatus biogenesis and maintenance are focused on two possibilities: one is self-assembly from the endoplasmic reticulum, and the other is nucleation by a stable template. Here, we asked in three different experimental situations whether assembly of the Golgi apparatus might be dynamically nucleated. During microtubule depolymerization, the integral membrane protein p27 and the peripheral Golgi protein GM130, appeared in newly formed, scattered Golgi elements before three different Golgi apparatus cisternal enzymes, whereas GRASP55, a medial peripheral Golgi protein, showed, if anything, a tendency to accumulate in scattered Golgi elements later than a cisternal enzyme. During Golgi formation after brefeldin A washout, endoplasmic reticulum exit of Golgi resident enzymes could be completely separated from that of p27 and GM130. p27 and GM130 accumulation was onto newly organized perinuclear structures, not brefeldin A remnants, and preceded that of a cisternal enzyme. Reassembly was completely sensitive to guanosine 5'-diphosphate-restricted Sar1p. When cells were microinjected with Sar1pWT DNA to reverse a guanosine 5'-diphosphate-restricted Sar1p endoplasmic reticulum-exit block phenotype, GM130 and p27 collected perinuclearly with little to no exit of a cisternal enzyme from the endoplasmic reticulum. The overall data strongly indicate that the assembly of the Golgi apparatus can be nucleated dynamically by GM130/p27 associated structures. We define dynamic nucleation as the first step in a staged organelle assembly process in which new component association forms a microscopically visible structure onto which other components add later, e.g. Golgi cisternae.  相似文献   

6.
The plasma membrane dopamine transporter (DAT) has an essential role in terminating dopaminergic neurotransmission by reuptake of dopamine into the presynaptic neurons. Therefore, the amount of DAT at the cell surface is a critical determinant of DAT function. In this study, we examined the role of the carboxyl terminus of DAT in trafficking of the transporter through the biosynthetic pathway to the plasma membrane. Live cell fluorescence microscopy and cell surface biotinylation were used to study the effects of systematic deletions and alanine substitutions in the carboxyl terminus on DAT localization. It was found that alanine substitutions of Lys-590 and Asp-600 significantly delayed the delivery of DAT to the plasma membrane because of retention of DAT in the endoplasmic reticulum (ER). Most surprising, mutation of Gly-585 to alanine completely blocked the exit of DAT from the ER and surface expression of the transporter. The effect of these three mutations on ER export of DAT was demonstrated in porcine aortic endothelial cells and the immortalized neuronal cell line 1RB3AN27. In primary cultures of rat embryonic midbrain neurons, DAT G585A, K590A, and D600A mutants were restricted to the cell soma and did not traffic to the dendrites or axonal processes. These data are consistent with the model whereby the local conformation and/or intramolecular interactions of the sequences of the DAT carboxyl terminus proximal to the last transmembrane domain are essential for the ER export of the transporter.  相似文献   

7.
There are two structural profiles in the yeast Golgi. The Golgi of Saccharomyces cerevisiae is composed of a number of vesicular compartments dispersed in the cytoplasm as recognized by a large number of Golgi marker proteins. In contrast, the Golgi of Pichia pastoris was reported to be organized in a small number of stacked cisternae located near the transitional endoplasmic reticulum (tER) sites by electron microscopy and immunofluorescent staining of a few marker proteins. The guanosine diphosphate (GDP)-mannose transporter (GMT) is an essential component in the yeast Golgi apparatus. We isolated an ortholog of the GMT gene of P. pastoris and visualized the gene product by epitope tagging to verify the structural characteristics of the Golgi. The tagged product in P. pastoris cell was observed in rod-like compartments in which Och1 mannosyltransferase was also found and the tER marker Sec12 and Sec13 proteins localized very close to them. The present results add further evidence of the restricted localization of the Golgi in P. pastoris cell.  相似文献   

8.
The transfer of precursor proteins through the membrane of the rough endoplasmic reticulum (ER) in yeast is strictly dependent on the presence of ATP. Since Kar2p (the yeast homologue of mammalian BiP) is required for translocation, and is an ATP binding protein, an ATP transport system must be coupled to the translocation machinery of the ER. We report here the characterization of a transport system for ATP in vesicles derived from yeast ER. ATP uptake into vesicles was found to be saturable in the micromolar range with a Km of 1 x 10(-5) M. ATP transport into ER vesicles was specifically inhibited by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a stilbene derivative known to inhibit a number of other anion transporters, and by 3'-O-(4-benzoyl)benzoyl-ATP (Bz2-ATP). Inhibition of ATP uptake into yeast microsomes by DIDS and Bz2-ATP blocked protein translocation in vitro measured co- as well as post-translationally. The inhibitory effect of DIDS on translocation was prevented by coincubation with ATP. Moreover, selective membrane permeabilization, allowing ATP access to the lumen, restored translocation activity to DIDS-treated membranes. These results demonstrate that translocation requires a DIDS and Bz2-ATP-sensitive component whose function is to transport ATP to the lumen of the ER. These findings are consistent with current models of protein translocation in yeast which stipulate the participation of Kar2p in the translocation process.  相似文献   

9.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors mediate the majority of excitatory signaling in the CNS, and the functional properties and subcellular fate of these receptors depend on receptor subunit composition. Subunit assembly is thought to occur in the endoplasmic reticulum (ER), although we are just beginning to understand the underlying mechanism. Here we examine the trafficking of Caenorhabditis elegans glutamate receptors through the ER. Our data indicate that neurons require signaling by the unfolded protein response (UPR) to move GLR-1, GLR-2, and GLR-5 subunits out of the ER and through the secretory pathway. In contrast, other neuronal transmembrane proteins do not require UPR signaling for ER exit. The requirement for the UPR pathway is cell type and age dependent: impairment for receptor trafficking increases as animals age and does not occur in all neurons. Expression of XBP-1, a component of the UPR pathway, is elevated in neurons during development. Our results suggest that UPR signaling is a critical step in neural function that is needed for glutamate receptor assembly and secretion.  相似文献   

10.
The pseudorabies virus gII gene shares significant homology with the gB gene of herpes simplex virus type 1. Unlike gB, however, gII is processed by specific protease cleavage events after the synthesis of its precursor. The processed forms are maintained in an oligomeric complex that includes disulfide linkages. In this report, we demonstrate the kinetics of modification, complex formation, and subsequent protease processing. In particular, we suggest that gII oligomer formation in the endoplasmic reticulum is an integral part of the export pathway and that protease cleavage occurs only after oligomers have formed. Furthermore, through the use of glycoprotein gene fusions between the gIII glycoprotein and the gII glycoprotein genes of pseudorabies virus, we have mapped a functional cleavage domain of gII to an 11-amino-acid segment.  相似文献   

11.
The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell-free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions of several GTP-binding proteins, peripheral membrane proteins, and an integral membrane protein during ER to Golgi transport are discussed here.  相似文献   

12.
Hepatitis C virus (HCV) core protein, expressed with a Semliki forest virus (SFV) replicon, self-assembles into HCV-like particles (HCV-LPs) at the endoplasmic reticulum (ER) membrane, providing an opportunity to study HCV particle morphogenesis by electron microscopy. Various mutated HCV core proteins with engineered internal deletions were expressed with this system, to identify core domains required or dispensable for HCV-LP assembly. The HCV core protein sequence was compared with its counterpart in GB virus B (GBV-B), the virus most closely related to HCV, to identify conserved domains. GBV-B and HCV display similar tropism for liver hepatocytes and their core proteins are organized similarly into three main domains (I, II and III), although GBV-B core is smaller and lacks approximately 35 amino acids (aa) in domain I. The deletion of short hydrophobic domains (aa 133-152 and 153-167 in HCV core) that appear highly conserved in domain II of both GBV-B and HCV core proteins resulted in loss of HCV core ER anchoring and self-assembly into HCV-LPs. The deletion of short domains found within domain I of HCV core protein but not in the corresponding domain of GBV-B core according to sequence alignment had contrasting effects. Amino acids 15-28 and 60-66 were shown to be dispensable for HCV-LP assembly and morphogenesis, whereas aa 88-106 were required for this process. The production of GBV-B core protein from a recombinant SFV vector was associated with specific ER ultrastructural changes, but did not lead to the morphogenesis of GBV-B-LPs, suggesting that different budding mechanisms occur in members of the Flaviviridae family.  相似文献   

13.
Normal herpesvirus assembly and egress depend on the correct intracellular localization of viral glycoproteins. While several post-Golgi transport motifs have been characterized within the cytoplasmic domains of various viral glycoproteins, few specific endoplasmic reticulum (ER)-to-Golgi transport signals have been described. We report the identification of two regions within the 125-amino-acid cytoplasmic domain of Varicella-Zoster virus gB that are required for its ER-to-Golgi transport. Native gB or gB containing deletions and specific point mutations in its cytoplasmic domain was expressed in mammalian cells. ER-to-Golgi transport of gB was assessed by indirect immunofluorescence and by the acquisition of Golgi-dependent posttranslational modifications. These studies revealed that the ER-to-Golgi transport of gB requires a nine-amino-acid region (YMTLVSAAE) within its cytoplasmic domain. Mutations of individual amino acids within this region markedly impaired the transport of gB from the ER to the Golgi, indicating that this domain functions by a sequence-dependent mechanism. Deletion of the C-terminal 17 amino acids of the gB cytoplasmic domain was also shown to impair the transport of gB from the ER to the Golgi. However, internal mutations within this region did not disrupt the transport of gB, indicating that its function during gB transport is not sequence dependent. Native gB is also transported to the nuclear membrane of transfected cells. gB lacking as many as 67 amino acids from the C terminus of its cytoplasmic domain continued to be transported to the nuclear membrane at apparently normal levels, indicating that the cytoplasmic domain of gB is not required for nuclear membrane localization.  相似文献   

14.
The cytosolic coat protein complex II (COPII) mediates vesicle formation from the endoplasmic reticulum (ER) and is essential for ER-to-Golgi trafficking. The minimal machinery for COPII assembly is well established. However, additional factors may regulate the process in mammalian cells. Here, a morphological COPII assembly assay using purified COPII proteins and digitonin-permeabilized cells has been applied to demonstrate a role for a novel component of the COPII assembly pathway. The factor was purified and identified by mass spectrometry as Nm23H2, one of eight isoforms of nucleoside diphosphate kinase in mammalian cells. Importantly, recombinant Nm23H2, as well as a catalytically inactive version, promoted COPII assembly in vitro, suggesting a noncatalytic role for Nm23H2. Consistent with a function for Nm23H2 in ER export, Nm23H2 localized to a reticular network that also stained for the ER marker calnexin. Finally, an in vivo role for Nm23H2 in COPII assembly was confirmed by isoform-specific knockdown of Nm23H2 by using short interfering RNA. Knockdown of Nm23H2, but not its most closely related isoform Nm23H1, resulted in diminished COPII assembly at steady state and reduced kinetics of ER export. These results strongly suggest a previously unappreciated role for Nm23H2 in mammalian ER export.  相似文献   

15.
Using either permeabilized cells or microsomes we have reconstituted the early events of the yeast secretory pathway in vitro. In the first stage of the reaction approximately 50-70% of the prepro-alpha-factor, synthesized in a yeast translation lysate, is translocated into the endoplasmic reticulum (ER) of permeabilized yeast cells or directly into yeast microsomes. In the second stage of the reaction 48-66% of the ER form of alpha-factor (26,000 D) is then converted to the high molecular weight Golgi form in the presence of ATP, soluble factors and an acceptor membrane fraction; GTP gamma S inhibits this transport reaction. Donor, acceptor, and soluble fractions can be separated in this assay. This has enabled us to determine the defective fraction in sec23, a secretory mutant that blocks ER to Golgi transport in vivo. When fractions were prepared from mutant cells grown at the permissive or restrictive temperature and then assayed in vitro, the acceptor Golgi fraction was found to be defective.  相似文献   

16.
Yeast and mammalian cells use a variety of different mechanisms to ensure that the endoplasmic reticulum and Golgi apparatus are inherited by both daughter cells on cell division. In yeast, endoplasmic reticulum inheritance involves both active microtubule and passive actin-based mechanisms, while the Golgi is transported into the forming daughter cell by an active actin-based mechanism. Animal cells actively partition the endoplasmic reticulum and Golgi apparatus, but association with the mitotic spindle-rather than the actin cytoskeleton-appears to be the mechanism  相似文献   

17.
The addition of sialic acid to glycoproteins and glycolipids requires Golgi sialyltransferases to have access to their glycoconjugate substrates and nucleotide sugar donor, CMP-sialic acid. CMP-sialic acid is transported into the lumen of the Golgi complex through the CMP-sialic acid transporter, an antiporter that also functions to transport CMP into the cytosol. We localized the transporter using immunofluorescence and deconvolution microscopy to test the prediction that it is broadly distributed across the Golgi stack to serve the many sialyltransferases involved in glycoconjugate sialylation. The transporter co-localized with ST6GalI in the medial and trans Golgi, showed partial overlap with a medial Golgi marker and little overlap with early Golgi or trans Golgi network markers. Endoplasmic reticulum-retained forms of sialyltransferases did not redistribute the transporter from the Golgi to the endoplasmic reticulum, suggesting that transporter-sialyltransferase complexes are not involved in transporter localization. Next we evaluated the role of the transporter's N- and C-terminal cytoplasmic tails in its trafficking and localization. The N-tail was not required for either endoplasmic reticulum export or Golgi localization. The C-tail was required for endoplasmic reticulum export and contained di-Ile and terminal Val motifs at its very C terminus that function as independent endoplasmic reticulum export signals. Deletion of the last four amino acids of the C-tail (IIGV) eliminated these export signals and prevented endoplasmic reticulum export of the transporter. This form of the transporter supplied limited amounts of CMP-sialic acid to Golgi sialyltransferases but was unable to completely rescue the transporter defect of Lec2 Chinese hamster ovary cells.  相似文献   

18.
19.
A novel membrane protein, Yml067c in the systematic ORF name, was discovered as a component of immunoisolated vesicles of the early Golgi compartment of the yeast Saccharomyces cerevisiae (Cho et al., FEBS Lett. 469, 151-154 (2000)). Conserved sequences having sequence similarity to Yml067c were widely distributed in the eukaryotes and one of them, Yal042w, was found in the Saccharomyces genome database. In the yeast cell, Yml067c and Yal042w were found to form a heterooligomeric complex by immunoprecipitation of their tagged derivatives from the detergent-solubilized membrane. Cell fractionation and indirect immunofluorescent staining indicated that the majority of these proteins were localized on the ER membrane. Therefore, the Yml067c-Yal042w complex should shuttle between the ER and the early Golgi compartment as well as the p24-family proteins.  相似文献   

20.
Gao C  Yu CK  Qu S  San MW  Li KY  Lo SW  Jiang L 《The Plant cell》2012,24(5):2086-2104
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号