首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Complementation of yeast null mutants is widely used for cloning of homologous genes from heterologous sources. We have used this method to clone the relevant V-ATPase genes from lemon fruit and Arabidopsis thaliana cDNA libraries. The pH levels are very different in the vacuoles of the lemon fruit and the A. thaliana, yet both are the result of the activity of the same enzyme complex, namely the V-ATPase. In order to investigate the mechanism that enables the enzyme to maintain such differences in pH values, we have compared the subunit composition of the V-ATPase complex from both sources. Towards this end, we have constructed a cDNA library from lemon fruit and cloned it into a similar shuttle vector to the one of the A. thaliana cDNA library, which is commercially available. In this work, we report the cloning and expression of VMA10 from both sources, two isoforms of the lemon proteolipid (VMA3) and the lemon homologue of yeast VPH1/STV1 subunit, LEMAC.  相似文献   

3.
4.
5.
6.
V-ATPase是多亚基复合蛋白,其c亚基负责V-ATPase的组装及质子通道的形成。本研究拟分析盐胁迫下过表达ThVHAc1基因拟南芥V-ATPase各亚基的表达,探讨过表达外源c亚基对拟南芥V-ATPase全酶响应盐胁迫表达模式的影响。实时荧光定量PCR结果显示,盐胁迫下,过表达外源ThVHAc1拟南芥V-ATPase 28个亚基的表达发生了明显改变,且拟南芥5个c亚基的表达均不同程度的被抑制。表明外源ThVHAc1基因能影响拟南芥V-ATPase各亚基的表达以调节V-ATPase全酶的活性,但各亚基的表达模式与V-ATPase活性非简单对应关系,各亚基互相协调决定V-ATPase活性。  相似文献   

7.
8.
9.
10.
There are three non-allelic isogenes encoding phosphoribosylanthranilate isomerase (PAI) in Arabidopsis thaliana. The expression plasmids were constructed by fusion of the GUS reporter gene to the three PAI promoters with or without the 5' region encoding PAI N-terminal polypeptides and transferred into Arabidopsis plants by Agrobacterium tumefaciens. Analysis of GUS activity revealed that the PAI 5' coding region was necessary for high expression of GUS activity. GUS activity in transgenic plants transformed with the expression plasmids containing the 5' coding region of PAI1 or PAI3 was 60—100-fold higher than that without the corresponding 5' region. However, the effect of 5' coding region of PAI2 gene on the GUS activity was very small (only about 1 time difference). The GUS histochemical staining showed a similar result as revealed by GUS activity assay. It was expressed in the mesophyll cells and guard cells, but not in the epidermic cells, indicating that the N-terminal polypeptides encoded by t  相似文献   

11.
12.
13.
NAD-dependent isocitrate dehydrogenase (IDH) is a Krebs cycle enzyme situated in mitochondria. In Arabidopsis thaliana, five genes encode functional IDH subunits that can be classed into two groups based on gene structure and subunit amino acid sequence. Arabidopsis contains two 'catalytic' and three 'regulatory' subunits according to their homology with yeast IDH. To date, an active IDH is believed to be heteromeric, containing at least one of each subunit type. This was verified in Arabidopsis by the complementation of yeast IDH mutants with the different Arabidopsis IDH-encoding cDNAs. Indeed, a single 'catalytic' and 'regulatory' subunit was sufficient to restore acetate growth of the yeast IDH double mutant. To gain information on possible IDH subunit interactions in planta, Arabidopsis IDH gene expression was analysed by Northern blot, PCR on cDNA libraries, in silico and in 'promoter'-reporter gene transgenic plants. Four of the IDH genes were expressed in all plant organs tested, while one gene (At4g35650) was not expressed in vegetative organs but was mainly expressed in the pollen. In leaves, the IDH genes were highly expressed in the veins, and to a lesser extent in mesophyll cells. The data are discussed with respect to IDH in other plant species.  相似文献   

14.
15.
We have previously isolated two closely related genes (ATCYP1 and ATCYP2) each encoding a cytosolic cyclophilin of Arabidopsis thaliana. Here we tested expression patterns of these two genes by Northern analysis and by histochemical analysis with transgenic plants carrying the promoter: beta-glucuronidase (GUS) fusion. The results showed that ATCYP1 is predominantly transcribed in vascular tissue and flowers, but ATCYP2 is at higher levels in younger leaves. The different expression patterns seemed to be conferred by the quite different promoter structures carrying various cis elements. Our finding suggests that the two cyclophilins have different roles in Arabidopsis thaliana cells.  相似文献   

16.
In eukaryotic cells, compartments of the highly dynamic endomembrane system are acidified to varying degrees by the activity of vacuolar H(+)-ATPases (V-ATPases). In the Arabidopsis thaliana genome, most V-ATPase subunits are encoded by small gene families, thus offering potential for a multitude of enzyme complexes with different kinetic properties and localizations. We have determined the subcellular localization of the three Arabidopsis isoforms of the membrane-integral V-ATPase subunit VHA-a. Colocalization experiments as well as immunogold labeling showed that VHA-a1 is preferentially found in the trans-Golgi network (TGN), the main sorting compartment of the secretory pathway. Uptake experiments with the endocytic tracer FM4-64 revealed rapid colocalization with VHA-a1, indicating that the TGN may act as an early endosomal compartment. Concanamycin A, a specific V-ATPase inhibitor, blocks the endocytic transport of FM4-64 to the tonoplast, causes the accumulation of FM4-64 together with newly synthesized plasma membrane proteins, and interferes with the formation of brefeldin A compartments. Furthermore, nascent cell plates are rapidly stained by FM4-64, indicating that endocytosed material is redirected into the secretory flow after reaching the TGN. Together, our results suggest the convergence of the early endocytic and secretory trafficking pathways in the TGN.  相似文献   

17.
18.
19.
20.
Depending on their genetic origin, plant mitochondrial tRNAs are classified into three categories: the "native" and "chloroplast-like" mitochondrial-encoded tRNAs and the imported nuclear-encoded tRNAs. The number and identity of tRNAs in each category change from one plant specie to another. As some plant mitochondrial trn genes were found to be not expressed, and as all Arabidopsis thaliana mitochondrial trn genes are known, we systematically tested the expression of A. thaliana mitochondrial trn genes. Both the "chloroplast-like" trnW and trnM-e genes were found to be not expressed. These exceptions are remarkable since trnW and trnM-e are expressed in the mitochondria of other land plants. Whereas we could not conclude which tRNA(Met) compensates the lack of expression of trnM-e, we showed that the cytosolic tRNA(Trp) is present in A. thaliana mitochondria, thus compensating the absence of expression of the mitochondrial-encoded trnW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号