首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了UV-C光催化纳米TiO2对蓝藻生长的影响。从生理上分析了UV-C光催化纳米TiO2具有促进蓝藻中鱼腥藻7120体内活泼态氧化物O2,.OH和H2O2的产生,抑制藻体中过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)和超氧歧化酶(SOD)在内的抗氧化酶活性,降低可溶性蛋白(Soluble Pr)、藻蓝蛋白(C-PC)、叶绿素a(C-Chl a)和类胡萝卜素(C-Carotenoids)含量,最终表现为藻细胞生长代谢中光合速率和呼吸速率迅速降低,细胞增殖中遗传物质核酸含量下降,并出现几乎达到100%的细胞致死率;同时,通过显微镜观察发现,受试蓝藻细胞形态结构发生了明显变化。可以看出,UV-C光催化纳米TiO2能够有效抑制蓝藻生长。  相似文献   

2.
硅和白粉菌诱导接种对黄瓜幼苗白粉病抗性影响的研究   总被引:9,自引:2,他引:9  
研究了硅酸盐和诱导接种白粉菌对黄瓜活性氧代谢、SiO2含量和抗病性的影响.结果表明,诱导接种能使叶片的超氧自由基(O2^-)产生速率、H2O2和丙二醛(MDA)含量升高,加硅接种处理的O2^-产生速率、H202和MDA含量明显低于不加硅接种处理.诱导接种能使叶片的过氧化氢酶(CAT)、过氧化物酶(POD)活性升高,超氧化物歧化酶(SOD)活性降低.加硅接种处理植株叶片的CAT、POD和SOD活性明显高于不加硅接种处理.诱导接种提高叶片的抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量,加硅处理的AsA含量明显低于不加硅处理,GSH含量高于不加硅处理.无论接种与否,加硅处理的SiO2含量显著高于不加硅处理,病情指数明显低于不加硅处理.  相似文献   

3.
李汝佳  李雪梅 《生态学杂志》2007,26(12):2096-2099
采用溶液培养方法,用水杨酸(SA)、脱落酸(ABA)或过氧化氢(H2O2)对2叶期小麦进行处理,研究了Cd胁迫下小麦的光合速率及抗氧化酶活性。结果表明:3种处理能不同程度增强叶片和根系中超氧化物歧化酶(SOD)和过氧化物酶(POD)的活性,提高叶片过氧化氢酶(CAT)活性,降低丙二醛(MDA)含量;增加叶片叶绿素含量及其光合速率。说明3种处理能增强小麦对Cd的抗性,其中H2O2预处理的效果最明显。  相似文献   

4.
外源一氧化氮供体SNP对黑麦草种子萌发和幼苗生长的影响   总被引:13,自引:1,他引:12  
采用水培试验,研究了不同浓度NO供体硝普钠(SNP)对黑麦草种子萌发和幼苗生长的影响。结果表明:50和100μmol.L-1SNP促进了黑麦草种子的发芽率、幼苗干物质积累速率、萌发种子α-淀粉酶活性、幼苗叶片可溶性蛋白质及叶绿素含量的提高。根和叶片中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性及还原型谷胱甘肽(GSH)、抗坏血酸(ASC)含量增加,超氧阴离子(O.2-)积累速率和过氧化氢(H2O2)含量下降,丙二醛(MDA)积累降低。高浓度SNP(500~2000μmol.L-1)抑制种子的萌发和幼苗生长,幼苗叶绿素、可溶性蛋白质及GSH、ASC含量下降,MDA含量和H2O2、O.2-产生速率提高,SOD、POD和APX活性降低,但叶片CAT活性升高。推测NO可能通过提高种子淀粉酶活性和幼苗活性氧清除能力,促进黑麦草种子的萌发和幼苗生长。  相似文献   

5.
以钝顶螺旋藻(Spirulina platensis)为实验对象,用H2O2构建氧化损伤模型,研究不同浓度硒对H2O2胁迫钝顶螺旋藻的生长、干重、水溶性蛋白、光合色素、抗氧化酶(SOD、POD、APX、CAT和GSH-PX)及丙二醛(MDA)含量的影响,探讨硒作为过氧化保护剂的可能性及其机制.结果显示:(1)在 0.25~2.5 mmol/L H2O2胁迫下,钝顶螺旋藻的藻密度、干重均显著降低,藻丝出现明显的断裂、破碎,藻体中MDA含量呈剂量性增加.(2)预添加一定浓度(2~1 000 μmol/L)的Na2SeO3可显著抑制1 mmol/L H2O2胁迫下的钝顶螺旋藻藻密度和干重的降低趋势,改善藻丝的断裂受损,诱导藻体中SOD、POD、APX、CAT和GSH-PX抗氧化酶系活性的提高,同时显著增加水溶性蛋白的含量,缓解脂溶性色素的降解,降低MDA的积累和羟自由基的相对含量,拮抗H2O2诱导的氧化损伤.研究表明,硒的预处理可以有效提高钝顶螺旋藻的抗氧化能力,对氧化胁迫引起的生理伤害起到明显的缓解作用,以达到较理想的保护效果.  相似文献   

6.
低温胁迫对巨尾桉幼苗膜脂过氧化及保护酶的影响   总被引:17,自引:0,他引:17  
以木本植物巨尾桉幼苗为材料 ,研究低温胁迫对巨尾桉膜脂过氧化及保护酶的影响 ,测定了幼苗叶片的O 2(超氧阴离子 )产生速率、H2 O2 、(过氧化氢 )、MDA(丙二醛 )含量、相对电导率和SOD(超氧化物歧化酶 )、POD(过氧化物酶 )、CAT(过氧化氢酶 )、APX(抗坏血酸过氧化物酶 )活性。结果表明 :低温胁迫使叶片O 2 产生速率、H2 O2 、MDA含量和相对电导率增加 ,但抗寒锻炼植株的增幅远小于对照 ;抗寒锻炼植株的SOD、POD、CAT和APX活性均低于对照。  相似文献   

7.
在CO2浓度分别为当今CO2浓度(360 mL/L)和加富浓度(5 000 mL/L)条件下,研究了UV-B胁迫对亚心形扁藻(Platymonas subcordiformis (Wille) Hazen)的光合作用、膜脂过氧化和抗氧化酶活性的影响。实验结果表明:(1) UV-B单独作用下,亚心形扁藻的干重、光合速率、叶绿素a (Chl a)和类胡萝卜素(Car.)含量显著降低,CO2加富单独作用下,亚心形扁藻的干重和光合速率显著升高,叶绿素a和类胡萝卜素含量与对照相比没有显著变化,而UV-B与CO2共同作用则使亚心形扁藻的干重和光合速率与对照相比没有显著变化,叶绿素a和类胡萝卜素含量显著降低。(2) UV-B单独作用和CO2加富单独作用都使可溶性蛋白含量显著降低,UV-B与CO2共同作用下的可溶性蛋白含量比UV-B单独作用的要高。高CO2对藻的可溶性蛋白含量的变化在很大程度上归因于Rubisco蛋白的降低。(3)UV-B单独作用下,O2-. 产生速率、H2O2 含量和MDA含量显著升高,而CO2加富单独作用下,O2-. 产生速率、H2O2 含量和MDA含量显著降低,与UV-B单独作用相比,UV-B与CO2共同作用使O2-. 产生速率、H2O2 含量和MDA含量显著降低。说明CO2加富可以减少活性氧对亚心形扁藻的氧化胁迫,同时减少UV-B对亚心形扁藻的膜脂过氧化伤害。(4) UV-B单独作用下,SOD、POD、CAT、GR和GPX活性显著升高,高CO2  相似文献   

8.
以能量25 keV、不同剂量Ar 离子注入甜瓜种子,其发芽率均有所降低,且可不同程度提高O2-·产生速率和H2O2含量,同时过氧化物酶(POD)、过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性增加,膜脂过氧化产物丙二醛(MDA)含量下降;剂量过大时,CAT、SOD活性下降,MDA含量上升.  相似文献   

9.
塔玛亚历山大藻对氮和磷的吸收及其生长特性   总被引:24,自引:3,他引:24  
参照塔玛亚历山大藻(Alexandrium tamarense)赤潮爆发时的物理条件,以f/2加富的人工海水为培养基,设定了不同的氮、磷水平,研究了在室内批量培养条件下,塔玛亚历山大藻对无机氮、磷的吸收和无机氮、磷对塔玛亚历山大藻细胞生长的影响.结果表明,3种氮浓度条件下,塔玛亚历山大藻的比生长速率几乎没有差异,但低氮(0.0882mmol·L-1)条件下,藻细胞的生物量最低;中氮(0.882mmol·L-1)条件下,藻细胞具有最大的生物量,分别比高氮(2.646mmol·L-1)和低氮下增加44.7%和53.6%.随着培养基中磷浓度的升高,藻细胞生物量也升高,在高磷(0.108mmol·L-1)条件下达到最大值17200cell·ml-1,但在中磷(0.036mmol.L-1)条件下藻细胞具有最大的比生长速率.藻细胞对氮、磷的吸收速率与生长状态有密切关系,氮、磷限制条件下生长的藻细胞对氮、磷有快速的吸收.研究显示,低的N/P比有利于塔玛亚历山大藻的生长分裂,对数生长后期适当补氮则有利于其生物量的积累.  相似文献   

10.
采用施加氮肥和人工控水的方法,以一年生刺槐幼苗为材料进行盆栽实验,探讨提高土壤氮素含量对不同土壤水分条件下刺槐幼苗叶片中活性氧产生和清除的影响。结果表明:(1)相同氮素水平下,降低土壤水分含量引起刺槐生物量和叶片光合色素含量降低,而过氧化氢(H2O2)含量升高;抗氧化酶系统中的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性和过氧化氢酶(CAT)活性不同程度降低;抗氧化剂中抗坏血酸(ASA)含量和还原型谷胱甘肽(GSH)含量均有所提高;MDA含量逐渐升高,而同期细胞膜相对电导率显著升高。(2)相同水分条件下,提高土壤氮素水平显著提高了刺槐幼苗叶片光合色素含量,同时也一定程度提高了总生物量,显著降低了H2O2含量;SOD、POD和CAT活性不同程度升高;ASA含量和GSH含量则表现出不同程度下降;相对电导率显著降低同时MDA含量一定程度降低。因此,增加土壤氮素有效性可显著提高刺槐幼苗叶片光合色素含量,显著抑制活性氧的产生,一定程度提高总生物量和抗氧化酶活性,降低膜脂过氧化程度,从而有利于缓解干旱引起的伤害。  相似文献   

11.
The objectives of this comparative study were to investigate the responses of biomass accumulation and partitioning to nitrogen supply and to examine the effect of low-nitrogen supply on the photosynthetic responses of maize leaves to steady-state and dynamic light. While the difference in leaf number and stem diameter was not statistically significant, there was a significant difference in plant height between the low-nitrogen and high-nitrogen maize plants. During grain-filling period, the ear leaf of the low-nitrogen maize plants possessed lower values of maximum photosynthetic rate, maximum stomatal conductance, maximum transpiration rate, apparent quantum yield, light compensate point, and carboxylation efficiency than did that of the high-nitrogen maize plants. Contrarily, lower values of intercellular CO2 concentration and dark respiration rate were observed in the high-nitrogen maize plants. In addition, a slower response to simulated sunflecks was found in the ear leaf of the low-nitrogen maize plants; however, stomatal limitations did not operate in the ear leaf of the high-nitrogen or low-nitrogen maize plants during the photosynthetic induction. As compared to the high-nitrogen maize plants, the low-nitrogen maize plants accumulated much less plant biomass but allocated a greater proportion of biomass to belowground parts. In conclusion, our results suggested that steady-state photosynthetic capacity is restricted by both biochemical and stomatal limitation and the photosynthetic induction is constrained by biochemical limitation alone in low-nitrogen maize plants, and that maize crops respond to low-nitrogen supply in a manner by which more biomass was allocated preferentially to root tissues.  相似文献   

12.
《Harmful algae》2009,8(1):54-59
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml−1, and high chl a (56 μg l−1), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 μg l−1 in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients.  相似文献   

13.
An analysis of the components of the antioxidant defence system in exponential and stationary growth phases of filamentous fungus Phycomyces blakesleeanus and the response to the oxidative stress hydrogen peroxide were performed. There is a strong positive correlation between mycelial antioxidant capacity and the contents of gallic acid, d-erythroascorbate (d-EAA) or d-erythroascorbate monoglucoside (d-EAAG). These secondary metabolites are specifically synthesized by this fungus and reach maximal values in the stationary growth phase, suggesting that they can play some role in the antioxidant defence system of this fungus. There is a differential expression of the two more notable antioxidant activities, catalase (CAT) and superoxide dismutase (SOD), depending of the growth stage of P. blakesleeanus, CAT being expressed in the exponential and SOD in the stationary phase. Phycomyces blakesleeanus showed a high resistance to the oxidative stress caused by H2O2 (50 and 200 mM) which was higher in exponential phase. This higher resistance can be explained by the presence of CAT, glutathione peroxidase (GPx), and the probable contribution of glutathione-S-transferase (GST) and high levels of reduced form of glutathione (GSH). The transition to stationary phase was accompanied with a higher physiological oxidative damage illustrated by the higher protein carbonylation. In this growth stage the resistance of the fungus to the oxidative stress caused by H2O2 could be explained by the presence of SOD, GPx, and the probable contribution of GST as well as of secondary metabolites, mainly d-EAA and d-EAAG. These results highlight a specific response to oxidative stress by H2O2 depending on the growth phase of P. blakesleeanus.  相似文献   

14.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

15.
The harmful dinoflagellate Cochlodinium polykrikoides is known to cause fish death by gill-clogging when its abundance exceeds approximately 1000 cells ml−1. Thus, red tides of this dinoflagellate have caused considerable loss in the aquaculture industry worldwide. Typhoons carrying strong winds and heavy rains may alter the process of red tide events. To investigate the effects of typhoons on C. polykrikoides red tides, daily variations in the abundance of C. polykrikoides, and wind speeds in three study areas in the South Sea of Korea were analyzed during the periods of C. polykrikoides red tides and the passage of 14 typhoons during 2012–2014. The typhoons differentially affected Cochlodinium red tides during the study period, and the daily maximum wind speed generated by the typhoon was critical. Four typhoons with daily maximum wind speeds of >14 m s−1 eliminated Cochlodinium red tides, while three typhoons with daily maximum wind speed of 5–14 m s−1 only lowered the abundance. However, other typhoons with daily maximum wind speeds of <5 m s−1 had no marked effect on the Cochlodinium abundance. Therefore, typhoons may sometimes eliminate C. polykrikoides red tide events, or reduce cell abundances to a level that is not harmful to caged fish cultivated in aquaculture industries. Thus, typhoons should be considered when compiling red tide dynamics and fish-kill models.  相似文献   

16.
Low temperature combined with low light (LL) affects crop production, especially the yield and quality of peppers, in northwest China during the winter and spring seasons. Zeaxanthin (Z) is a known lipid protectant and active oxygen scavenger. However, whether exogenous Z can mitigate LL-induced inhibition of photosynthesis and oxidative stress in peppers remains unclear. In this study, we investigated the effects of exogenous Z on photosynthesis and the antioxidant machinery of pepper seedlings subject to LL stress. The results showed that the growth and photosynthesis of pepper seedlings were significantly inhibited by LL stress. In addition, the antioxidant machinery was disturbed by the uneven production and elimination of reactive oxygen species (ROS), which resulted in damage to the pepper. For example, membrane lipid peroxidation increased ROS content, and so on. However, exogenous application of Z before LL stress significantly increased the plant height, stem diameter, net photosynthetic rate (Pn), and stomata, which were obviously closed at LL. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), mono de-hydroascorbate reductase (MDHAR), de-hydroascorbate reductase (DHAR), ascorbate peroxidase (APX), and ascorbate oxidase (AAO) improved significantly due to the increased expression of CaSOD, CaCAT, CaAPX, CaMDHAR, and CaDHAR. The ascorbic (AsA) and glutathione (GSH) contents and ascorbic/dehydroascorbate (AsA/DHA) and glutathione/oxidized glutathione (GSH/GSSG) ratios also increased significantly, resulting in the effective removal of hydrogen peroxide (H2O2) and superoxide anions (O2•−) caused by LL stress. Thus, pre-treatment with Z significantly reduced ROS accumulation in pepper seedlings under LL stress by enhancing the activity of antioxidant enzymes and accumulation of components of the ascorbate–glutathione (AsA–GSH) cycle and upregulated key genes in the AsA–GSH cycle.  相似文献   

17.
18.
The mole crab Emerita talpoida migrates with the tide in the swash zone of sand beaches. A circatidal rhythm in vertical swimming underlies movement, in which mature male crabs show peak swimming activity 1-2 h after the time of high tides at the collection site. In addition, there is a secondary rhythm in activity amplitude, in which crabs are maximally active following low amplitude high tides and minimally active following high amplitude high tides. The present study determined the phase response relationship for entrainment of the circatidal rhythm with mechanical agitation and whether the cycle in activity related to tidal amplitude could be entrained by a cycle in the duration of mechanical agitation at the times of consecutive high tides. After entrainment with mechanical agitation on an orbital shaker, activity of individual crabs was monitored in constant conditions with a video system and quantified as the number of ascents from the sand each 0.5 h. Mechanical agitation at the times of high tide, mid-ebb and low tide reset the timing of the circatidal rhythm according to the timing relationship to high tide. However, mechanical agitation during flood tide had no entrainment effect. In addition, a cycle in duration of mechanical agitation entrained the rhythm in activity amplitude associated with tidal amplitude. Both rhythms and entrainment effectiveness over the tidal cycle may function to reduce the likelihood of stranding above the swash zone.  相似文献   

19.
Genistein is an isoflavone that has estrogen (E2)‐like activity and is beneficial for follicular development, but little is known regarding its function in oxidative stress (OS)‐mediated granulosa cell (GC) injury. Here, we found that after exposure to H2O2, Genistein weakened the elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), which were regarded as the biomarkers for OS, and rescued glutathione (GSH) content and GSH/GSSG ratio accompanying with a simultaneous increase in cyclic adenosine monophosphate (cAMP) level, whereas addition of protein kinase A (PKA) inhibitor H89 impeded the effects of Genistein on the levels of ROS and MDA. Further analysis evidenced that Genistein enhanced the activities of antioxidant enzymes superoxide dismutase (SOD), GSH‐peroxidase (GSH‐Px), and catalase (CAT) in H2O2‐treated GCs, but this enhancement was attenuated by H89. Under OS, Genistein improved cell viability and lessened the apoptotic rate of GCs along with a reduction in the activity of Casp3 and levels of Bax and Bad messenger RNA (mRNA), while H89 reversed the above effects. Moreover, Genistein treatment caused an obvious elevation in mitochondrial membrane potential (MMP) followed by a decline in the levels of intracellular mitochondrial superoxide, but H89 inhibited the regulation of Genistein on MMP and mitochondrial superoxide. Supplementation of Genistein promoted the secretion of E2 and increased the expression of Star and Cyp19a1 mRNA, whereas suppressed the level of progesterone (P4) accompanied with a decline in the level of Hsd3b1 mRNA expression. H89 blocked the regulation of Genistein on the secretion of E2 and P4, and alleviated the ascending of Star and Cyp19a1 elicited by Genistein. Collectively, Genistein protects GCs from OS via cAMP‐PKA signaling.  相似文献   

20.
A red tide composed mainly of two Prorocentrum species was found near Kadan Island, southern Myanmar coast, on March 14, 2012. This is the first record of a red tide in the Myanmar coastal area. The red tide included three different harmful dinoflagellates: Prorocentrum rhathymum, Prorocentrum shikokuense and Alexandrium affine. Strains of these species were successfully cultured and examined with detailed morphological observation and DNA (28S rRNA gene) analyses. The strains were subjected to growth experiments under different temperatures to understand their growth capabilities. The experiments were carried out at four different temperature regimes (15, 20, 25 and 30 °C). A. affine exhibited low tolerance for the low temperature regime (15 °C), despite records of its presence in northern temperate regions, indicating this strain is adapted to the tropical environment in Myanmar. P. rhathymum and P. shikokuense exhibited broad tolerance to all given temperature ranges and showed high division rates, providing the physiological basis to form red tides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号