首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
海洋真菌由于其遗传背景复杂、代谢产物种类多且产量高,已成为海洋微生物新天然产物的主要来源,从我们对2010–2013年初的海洋微生物来源新天然产物的统计来看,研究最多的是曲霉属(Aspergillus)真菌,占海洋真菌来源新天然产物的31%。本文从菌株来源、化合物结构及其生物活性等方面,综述了自1992年第一个海洋曲霉天然产物到2014年8月已报道的共512个海洋曲霉来源的新天然产物。这些海洋天然产物具有丰富的化学多样性,且36%的化合物表现出细胞毒、抑菌、抗氧化和抗寄生虫等生物活性;含氮化合物是其主要的结构类型、约占曲霉源海洋天然产物总数的52%,也是出现活性化合物比例最高的结构类型、约40%的含氮化合物具有生物活性,其中脱氢二酮哌嗪生物碱halimide的化学衍生物plinabulin已结束II期临床研究,并于2015年第三季度开始在美国和中国进行III期临床研究,用于治疗转移性的晚期非小细胞肺癌。  相似文献   

2.
Aspergillus is a fungal genus comprising several hundred species, many of which can damage the health of plants, animals and humans by direct infection and/or due to the production of toxic secondary metabolites known as mycotoxins. Aspergillus-specific antibodies have been generated against polypeptides, polysaccharides and secondary metabolites found in the cell wall or secretions, and these can be used to detect and monitor infections or to quantify mycotoxin contamination in food and feed. However, most Aspergillus-specific antibodies are generated against heterogeneous antigen preparations and the specific target remains unknown. Target identification is important because this can help to characterize fungal morphology, confirm host penetration by opportunistic pathogens, detect specific disease-related biomarkers, identify new candidate targets for antifungal drug design, and qualify antibodies for diagnostic and therapeutic applications. In this review, we discuss how antibodies are raised against heterogeneous Aspergillus antigen preparations and how they can be characterized, focusing on strategies to identify their specific antigens and epitopes. We also discuss the therapeutic, diagnostic and biotechnological applications of Aspergillus-specific antibodies.  相似文献   

3.
High throughput genome sequencing has revealed a multitude of potential secondary metabolites biosynthetic pathways that remain cryptic. Pathway reconstruction coupled with genetic engineering via heterologous expression enables discovery of novel compounds, elucidation of biosynthetic pathways, and optimization of product yields. Apart from Escherichia coli and yeast, fungi, especially Aspergillus spp., are well known and efficient heterologous hosts. This review summarizes recent advances in heterologous expression of microbial secondary metabolite biosynthesis in Aspergillus spp. We also discuss the technological challenges and successes in regard to heterologous host selection and DNA assembly behind the reconstruction of microbial secondary metabolite biosynthesis.  相似文献   

4.
Three sections of Aspergillus (five species, 21 strains) were classified according to culture medium-dependent and time-dependent secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analysed by liquid chromatography–electrospray ionisation tandem mass spectrometry (LC–ESI-MS–MS) and multivariate statistical methods. From the Aspergillus sections that were cultured on malt extract agar (MEA) and Czapek yeast extract agar (CYA) for 7, 12, and 16 d, Aspergillus sections Fumigati (A. fumigatus), Nigri (A. niger), and Flavi (A. flavus, A. oryzae, and A. sojae) clustered separately on the basis of the results of the secondary metabolite analyses at 16 d regardless of culture medium. Based on orthogonal projection to latent structures discriminant analysis by partial least squares discriminant analysis (PLS-DA), we identified the secondary metabolites that helped differentiate sections between A. fumigatus and Aspergillus section Flavi to be gliotoxin G, fumigatin oxide, fumigatin, pseurotin A or D, fumiquinazoline D, fumagillin, helvolic acid, 1,2-dihydrohelvolic acid, and 5,8-dihydroxy-9,12-octadecadienoic acid (5,8-diHODE). Among these compounds, fumagillin, helvolic acid, and 1,2-dihydrohelvolic acid of A. fumigatus showed antifungal activities against Malassezia furfur, which is lipophilic yeast that causes epidermal skin disorders.  相似文献   

5.
Representatives of the genus Streptomyces from terrestrial sources have been the focus of intensive research for the last four decades because of their prolific production of chemically diverse and biologically important compounds. However, metabolite research from this ecological niche had declined significantly in the past years because of the rediscovery of the same bioactive compounds and redundancy of the sample strains. More recently, a new picture has begun to emerge in which marine-derived Streptomyces bacteria have become the latest hot spot as new source for unique and biologically active compounds. Here, we investigated the marine sediments collected in the temperate cold waters from British Columbia, Canada as a valuable source for new groups of marine-derived Streptomyces with antimicrobial activities. We performed culture dependent isolation from 49 marine sediments samples and obtained 186 Streptomyces isolates, 47 of which exhibited antimicrobial activities. Phylogenetic analyses of the active isolates resulted in the identification of four different clusters of bioactive Streptomyces including a cluster with isolates that appear to represent novel species. Moreover, we explored whether these marine-derived Streptomyces produce new secondary metabolites with antimicrobial properties. Chemical analyses revealed structurally diverse secondary metabolites, including four new antibacterial novobiocin analogues. We conducted structure-activity relationships (SAR) studies of these novobiocin analogues against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we revealed the importance of carbamoyl and OMe moieties at positions 3” and 4” of novobiose as well as the hydrogen substituent at position 5 of hydroxybenzoate ring for the anti-MRSA activity. Changes in the substituents at these positions dramatically impede or completely eliminate the inhibitory activity of novobiocins against MRSA.  相似文献   

6.
A moderately halophilic fungus F1 was isolated from a marine solar saltern in Weihai, China. The identification of the fungus F1 was performed by the morphological characteristics, physiological and biochemical tests as well as phylogenetic analysis based on ITS (internal transcribed spacer)-5.8S rDNA region sequence comparison. The strain was identified as belonging to the genus Aspergillus and designated as Aspergillus sp. nov. F1. Furthermore, Aspergillus sp. nov. F1 grew well in 3?C15?% (w/v) NaCl, and with increasing of salinity, the generation of secondary metabolites with cytotoxicity was also augmented. Three compounds with cytotoxicity were isolated from the ethyl acetate extract of the whole broth and mycelia of Aspergillus sp. nov. F1, and identified as ergosterol, rosellichalasin and cytochalasin E, respectively. Especially, ergosterol showed high potent cytotoxic activity to human colon cancer cell line RKO with IC50 of 3.3?±?0.5???M. Considering the high cytochalasin production and the simple and economical fermentation of Aspergillus sp. nov. F1, the strain could be used as potential strain for large scale production of the cytochalasin E and rosellichalasin.  相似文献   

7.
Effects of different light conditions on development, growth, and secondary metabolism of three marine-derived filamentous fungi were investigated. Darkness irritated sexual development of Aspergillus glaucus HB1-19, while white, red, and blue lights improved its asexual behavior. The red and blue lights improved asexual stroma formation of Xylaria sp. (no. 2508), but the darkness and white light inhibited it. Differently, development of Halorosellinia sp. (no. 1403) turned out to be insensitive to any tested light irradiation. Upon the experimental data, no regularity was observed linking development with secondary metabolism. However, fungal growth showed inversely correlation with productions of major bioactive compounds (aspergiolide A, 1403C, and xyloketal B) from various strains. The results indicated that aspergiolide A biosynthesis favored blue light illumination, while 1403C and xyloketal B preferred red light irradiation. With the favorite light sensing conditions, productions of aspergiolide A, 1403C, and xyloketal B were enhanced by 32.9, 21.9, and 30.8 % compared with those in the dark, respectively. The phylogenetic analysis comparing the light-responding proteins of A. glaucus HB 1-19 with those in other systems indicated that A. glaucus HB 1-19 was closely related to Aspergillus spp. especially A. nidulans in spite of its role of marine-derived fungus. It indicated that marine fungi might conserve its light response system when adapting the marine environment. This work also offers useful information for process optimization involving light regulation on growth and metabolism for drug candidate production from light-sensitive marine fungi.  相似文献   

8.
Genome sequencing of Aspergillus species including Aspergillus nidulans has revealed that there are far more secondary metabolite biosynthetic gene clusters than secondary metabolites isolated from these organisms. This implies that these organisms can produce additional secondary metabolites, which have not yet been elucidated. The A. nidulans genome contains 12 nonribosomal peptide synthetase (NRPS), one hybrid polyketide synthase/NRPS, and 14 NRPS-like genes. The only NRPS-like gene in A. nidulans with a known product is tdiA, which is involved in terrequinone A biosynthesis. To attempt to identify the products of these NRPS-like genes, we replaced the native promoters of the NRPS-like genes with the inducible alcohol dehydrogenase (alcA) promoter. Our results demonstrated that induction of the single NRPS-like gene AN3396.4 led to the enhanced production of microperfuranone. Furthermore, heterologous expression of AN3396.4 in Aspergillus niger confirmed that only one NRPS-like gene, AN3396.4, is necessary for the production of microperfuranone.  相似文献   

9.
Unraveling polyketide synthesis in members of the genus Aspergillus   总被引:1,自引:0,他引:1  
Aspergillus species have the ability to produce a wide range of secondary metabolites including polyketides that are generated by multi-domain polyketide synthases (PKSs). Recent biochemical studies using dissected single or multiple domains from PKSs have provided deep insight into how these PKSs control the structural outcome. Moreover, the recent genome sequencing of several species has greatly facilitated the understanding of the biosynthetic pathways for these secondary metabolites. In this review, we will highlight the current knowledge regarding polyketide biosynthesis in Aspergillus based on the domain architecture of non-reducing, highly reducing, and partially reducing PKSs, and PKS-non-ribosomal peptide synthetases.  相似文献   

10.
Post-translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co-localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non-histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.  相似文献   

11.
Two novel benzylazaphilone derivatives with an unprecedented carbon skeleton, aspergilone A (1), and its symmetrical dimer with a unique methylene bridge, aspergilone B (2), have been isolated from the culture broth of a marine-derived fungus Aspergillus sp. from a gorgonian Dichotella gemmacea. Their structures and relative stereochemistries of 1 and 2 were elucidated using a combination of NMR spectroscopy and X-ray crystallography. Compound 1 not only exhibited in vitro selective cytotoxicity but also showed potent antifouling activity.  相似文献   

12.
Two new chlorinated secondary metabolites, saccharochlorines A and B (1 and 2), were isolated from the saline cultivation of a marine-derived bacterium Saccharomonospora sp. (KCTC-19160). The chemical structures of the saccharochlorines were elucidated by 2D NMR and MS spectroscopic data. Saccharochlorines A and B (1 and 2) exhibit weak inhibition of β-secretase (BACE1) in biochemical inhibitory assay, but they induced the release of Aβ (1–40) and Aβ (1–42) in H4-APP neuroglial cells. This discrepancy might be derived from the differences between the cellular and sub-cellular environments or the epigenetic stimulation of BACE1 expression.  相似文献   

13.
Secondary metabolites of 22 fungal strains (genus Aspergillus, section Usti) isolated at diverse geographic regions, including the Arctic permafrost deposits, were studied. The studied strains were found to synthesize a variety of biologically active compounds, structurally identified as drimane sesqueterpenoids, isoquinoline alkaloids (TMC-120 A?C, derivative 1), meroterpenoids (austalides О and J), and anthraquinone pigments (averufin, versicolorin C). Desferritriacetylfusigen production by A. calidoustus isolates is reported for the first time. The individual spectra of secondary metabolites were used for reidentification of 17 strains, of which 15 were identified as A. calidoustus and two, as A. pseudodeflectus.  相似文献   

14.
The secondary metabolome provides pathogenic fungi with a plethoric and versatile panel of molecules that can be deployed during host ingress. While powerful genetic and analytical chemistry methods have been developed to identify fungal secondary metabolites (SMs), discovering the biological activity of SMs remains an elusive yet critical task. Here, we describe a process for identifying the immunosuppressive properties of Aspergillus SMs developed by coupling a cost-effective microfluidic neutrophil chemotaxis assay with an in vivo zebrafish assay. The microfluidic platform allows the identification of metabolites inhibiting neutrophil recruitment with as little as several nano-grams of compound in microliters of fluid. The zebrafish assay demonstrates a simple and accessible approach for performing in vivo studies without requiring any manipulation of the fish. Using this methodology we identify the immunosuppressive properties of a fungal SM, endocrocin. We find that endocrocin is localized in Aspergillus fumigatus spores and its biosynthesis is temperature-dependent. Finally, using the Drosophila toll deficient model, we find that deletion of encA, encoding the polyketide synthase required for endocrocin production, yields a less pathogenic strain of A. fumigatus when spores are harvested from endocrocin permissive but not when harvested from endocrocin restrictive conditions. The tools developed here will open new “function-omic” avenues downstream of the metabolomics, identification, and purification phases.  相似文献   

15.
A marine-derived actinomycete (Streptomyces sp. WBF16) exhibiting antitumor activities was investigated. The strain was identified using morphological, biochemical and genetic techniques. 16S rDNA sequence of the isolate indicated that it was most closely related to Streptomyces coelicolor A3 (2). Furthermore, a new aureolic acid (Chromomycin B, 1), along with Chromomycin A2 (2) and Chromomycin A3 (3) were isolated from its secondary metabolites. Their structures were determined by chemical and spectroscopic methods including 1D, 2D NMR and HRMS. Compounds 13 showed strong cytotoxicity against SGC7901, HepG2, A549, HCT116 and COC1 and HUVEC.  相似文献   

16.
Secondary metabolites (SMs) produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.  相似文献   

17.
Fungi that invade plant inner tissues without inducing disease symptoms are known as fungal endophytes. They represent a promising and tremendous reservoir of natural products with valuable biological potentials for application in medicine, agriculture and industry. Among the numerous existing endophytic fungi, Aspergillus strains constitute one of the most prolific sources of secondary metabolites with diverse chemical classes and interesting biological activities. This review covers the literature of the year 2020, reporting the isolation of 202 compounds obtained from more than 10 different endophytic Aspergillus species associated with different host plants. Analysis and interpretation of the collected data revealed that chemical investigation of endophytes belonging to the genus Aspergillus may greatly contribute to the discovery of potential drug leads. The isolated metabolites were chemically various and exhibited diverse biological activities such as antibacterial, anti-cancer, anti-plasmodial, anti-inflammatory, antioxidant, immunosuppressive and antifungal activities. Moreover, adoption of advanced technology in molecular biology together with modern chemical tools is anticipated to improve the discovery of new biopharmaceuticals from this valuable microbial world in the future.  相似文献   

18.
During the systematic screening of active compounds from marine-derived fungi, the extract of a strain of Aspergillus versicolor MF359 isolated from a marine sponge of Hymeniacidon perleve was identified for detailed chemical investigation. Three new secondary metabolites, named hemiacetal sterigmatocystin (1), acyl-hemiacetal sterigmatocystin (2), and 5-methoxydihydrosterigmatocystin (3), together with a known compound, aversin (4), were characterized. 1 represents a first structure of sterigmatocystin hemiacetal from nature. The antibacterial activities of these identified compounds were evaluated against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa. Compound 3 showed activity against S. aureus and B. subtilis with MIC values of 12.5 and 3.125 μg/mL, respectively.  相似文献   

19.
20.
The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号