首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of Y recombinants have been isolated from Y-specific DNA libraries and regionally located on the Y chromosome using a Y deletion panel constructed from individuals carrying structural abnormalities of the Y chromosome. Of twenty recombinants examined twelve have been assigned to Yp and eight to Yq. Five of the Yp recombinants map between Yp11.2 and Ypter and one can only be assigned to Yp. Of the former, four detect homologies on the X chromosome between Xq13 and Xq24 and the latter one between Xp22.3 and Xpter. The sixth recombinant detects autosomal homologous sequences. The six remaining Yp probes are located between Ycen and Yp11.2. One of these detects a homology on the X chromosome at Xq13-Xq24 and a series of autosomal sequences, two detect uniquely Y-specific sequences and three a complex pattern of autosomal homologies. The remaining eight recombinants have been assigned to three intervals on Yq. Of three recombinants located between Ycen and Yq11.21 two detect only Y sequences and one additional autosomal homologies. Two recombinants lie in the interval Yq11.21-Yq11-22, one of which detects only Y sequences and the other an Xp homology between Xp22.3 and Xpter. Finally, the three remaining Yq recombinants all detect autosomal homologies and are located between Yq11.22 and Yq12. The divergence between homologies on different chromosomes has been examined for three recombinants by washing Southern Blots at different levels of stringency. Additionally, Southern analysis of DNA from flow sorted chromosomes has been used to identify autosomes carrying homologies to two of the Y recombinants.  相似文献   

2.
Protocadherin X (PCDHX) and Protocadherin Y (PCDHY) are cell-surface adhesion molecules expressed predominantly in brain. The human PCDH11X/Y gene pair is located in the non-pseudoautosomal X-Y homologous region (Xq21.3/Yp11.2). The possible existence of PCDH11 gene dosage differences between human and non-human primates is of evolutionary significance with respect to species differences and escape from X inactivation, and has been repeatedly debated. Previous investigations on the X/Y homologous status of PCDH11 and adjacent sequences in non-human primates have highlighted the complexity of the molecular pattern and evolutionary history of this genomic region. This paper provides for the first time direct evidence for the absence of the PCDH11 genefrom the Y chromosome of chimpanzee (Pan troglodytes) as well as gorilla (Gorilla gorilla). By confirmingthe suspected lack of X-Y homologous status for PCDH11 in non-human primates, our results reinforce the hypothesis of a hominid-specific role for this gene in brain development.  相似文献   

3.
SINE-R elements constitute a class of retroposons derived from the long terminal repeat (LTR) of the human endogenous retrovirus HERV-K family that are present in hominoid primates and active in the human genome. In an investigation of the X chromosome, we identified twenty-five SINE-R elements with between 89.6 and 97.7% homology with the SINE-R.C2 element that is human specific, originally identified in the gene for the C2 component of complement. SINE-R.C2 and a sequence HS307 that we previously identified in a region of Xq21.3 that has a recently created homology with a 4 Mb block in Yp11.2 are amongst the group of elements that have diverged furthest from the parent HERV-K10 sequence. The sequence on the X chromosome resemble those that we previously described on chromosomes 7 and 17 and the Y chromosome, with a similar range of variation. Phylogenetic analysis from the retroposon family including those of African great apes using the neighbor-joining method suggests that the SINE-R retroposon family have evolved independently during primate evolution. Further investigation of SINE-R elements on the sex chromosomes, particularly in recently created regions of X-Y homology, may cast light on the timing of the retroposition process and its possible relevance to recent evolutionary change.  相似文献   

4.
The human sex chromosomes differ in sequence, except for the pseudoautosomal regions (PAR) at the terminus of the short and the long arms, denoted as PAR1 and PAR2. The boundary between PAR1 and the unique X and Y sequences was established during the divergence of the great apes. During a copy number variation screen, we noted a paternally inherited chromosome X duplication in 15 independent families. Subsequent genomic analysis demonstrated that an insertional translocation of X chromosomal sequence into theMa Y chromosome generates an extended PAR. The insertion is generated by non-allelic homologous recombination between a 548 bp LTR6B repeat within the Y chromosome PAR1 and a second LTR6B repeat located 105 kb from the PAR boundary on the X chromosome. The identification of the reciprocal deletion on the X chromosome in one family and the occurrence of the variant in different chromosome Y haplogroups demonstrate this is a recurrent genomic rearrangement in the human population. This finding represents a novel mechanism shaping sex chromosomal evolution.  相似文献   

5.
The Xq21.3/Yp11 homology block on the human sex chromosomes represents a recent addition to the Y chromosome through a transposition event. It is believed that this transfer of material occurred after the divergence of the hominid lineage from other great apes. In this paper we investigate the structure and evolution of the block through fluorescence in situ hybridisation, contig assembly, the polymerase chain reaction, exon trapping, sequence comparison, and annotation of sequence data. The overall structure is well conserved between the human X chromosome and the Y chromosome as well as between the X chromosomes from different primates. Although the sequence data reveal a high level of nucleotide sequence identity for the human X and Y, there are regions of significant divergence, such as that around the marker DXS214. These are presumably the consequence of multiple rearrangements during evolution and are of particular importance with respect to the potential gene content in this segment of the interval.  相似文献   

6.
The pseudoautosomal regions of the human sex chromosomes   总被引:25,自引:0,他引:25  
In human females, both X chromosomes are equivalent in size and genetic content, and pairing and recombination can theoretically occur anywhere along their entire length. In human males, however, only small regions of sequence identity exist between the sex chromosomes. Recombination and genetic exchange is restricted to these regions of identity, which cover 2.6 and 0.4 Mbp, respectively, and are located at the tips of the short and the long arm of the X and Y chromosome. The unique biology of these regions has attracted considerable interest, and complete long-range restriction maps as well as comprehensive physical maps of overlapping YAC clones are already available. A dense genetic linkage map has disclosed a high rate of recombination at the short arm telomere. A consequence of the obligatory recombination within the pseudoautosomal region is that genes show only partial sex linkage. Pseudoautosomal genes are also predicted to escape X-inactivation, thus guaranteeing an equal dosage of expressed sequences between the X and Y chromosomes. Gene pairs that are active on the X and Y chromosomes are suggested as candidates for the phenotypes seen in numerical X chromosome disorders, such as Klinefelter's (47,XXY) and Turner's syndrome (45,X). Several new genes have been assigned to the Xp/Yp pseudoautosomal region. Potential associations with clinical disorders such as short stature, one of the Turner features, and psychiatric diseases are discussed. Genes in the Xq/Yq pseudoautosomal region have not been identified to date.  相似文献   

7.
Duplications of Yq arm (and AZF) seems to be tolerated by fertile males, while mutations, deletions, duplications or haploinsufficiency of SHOX can originate a wide range of phenotypes, including short stature and skeletal abnormalities. We report a case of non-obstructive azoospermia in a young man with short stature, skeletal anomalies, normal intelligence and hormonal parameters. This male showed a very singular Y-chromosome aberration, consisting of a duplication of Yq and proximal regions of Yp, with a deletion of almost all PAR1 in Yptel, including SHOX. CBA- and RBA-banding and FISH-mapping with telomeric, centromeric, AZF and SHOX probes were used. These results were confirmed by array CGH, which revealed the following karyotype constitution: arr [hg19] Xp22.33 or Yp11.32p11.31 (310,932–2,646,815 or 260,932–2,596,815) ×1, Yp11.2q12 (8,641,183–59,335,913) ×2. We conclude that the haploinsufficience of SHOX may be the cause of short stature and skeletal defects in the patient, while the non-obstructive azoospermia could be related to the lack of X–Y pairing during meiosis originated by the anomalous configuration of this chromosome abnormality and large deletion which occurred in Yp-PAR1.  相似文献   

8.
The origin of modern humans can be traced by comparing polymorphic sites in either mitochondria or genomic sequences between humans and other primates. The human Y chromosome has both a non-recombining region and X-Y homologous pseudo-autosomal regions. In the nonrecombining region events during evolution can be directly detected. At least a part of homology between Xq21 and Yp11 is a result of rather recent translocations from the X chromosome to the Y chromosome. DNA markers residing in the nonrecombining region of the human Y chromosome are potentially useful in tracing male-specific gene flow in human evolution. However, the number of available markers in the region is limited. Here, we report a novel X-Y homologous (CA)n repeat locus in the nonrecombining region of the Y chromosome. This marker, DXYS241, has several interesting features. Y- and X-chromosome alleles are distinguishable because the Y-chromosome alleles are shorter than the X-chromosome alleles most of the time. We developed 2 primer sets for specific examination of Y- and X-chromosome alleles. The marker should be useful in establishing relationships between populations based on patrilineal gene flow. Sequences homologous to DXYS241 are also found on the X chromosome of primates. Four events during primate evolution that led to the modern human Y chromosome were identified.  相似文献   

9.
To better understand the evolutionary dynamics of repetitive sequences in human sex chromosomes, we have analyzed seven new X/Y homologous microsatellites located within PCDHX/Y, one of the two recently described gene pairs in the Xq21.3/Yp11.2 hominid-specific homology block, in samples from Portugal and Mozambique. Sharp differences were observed on X/Y allele distributions, concerning both the presence of private alleles and a different modal repeat length for X-linked and Y-linked markers, and this difference was statistically significant. Higher diversity was found in X-linked microsatellites than in their Y chromosome counterparts; when comparing populations, Mozambicans showed more allele diversity for the X chromosome, but the contrary was true for the Y chromosome microsatellites. Evolutionary patterns, relying on intragenic PCDHX/Y SNPs, also revealed distinct scenarios for X and Y chromosomes. Greater microsatellite diversity was displayed by African X chromosomes within the most common haplotypes shared by both populations, whereas higher microsatellite diversity was found in Portugal for the ancestral Y chromosome haplotype. The most frequent PCDHY haplotype in Portuguese was the derived one, and it was not found in Mozambicans. TMRCA estimated by the rho parameter resulted in 13,700 years (7,500-20,000 years), which is consistent with a recent, post-Out-of-Africa origin for this haplotype. In conclusion, the newly described microsatellite loci generally displayed greater X-linked to Y-linked diversity and this pattern was also detected with slower evolving markers, with a remarkable differentiation between populations observed for Y chromosome haplotypes and, thus, greater divergence among Y chromosomes in human populations.  相似文献   

10.
Summary In situ hybridization experiments were carried out with two clones, YACG 35 and 2.8, which had been selected from two genomic libraries strongly enriched for the human Y chromosome. Besides the human Y chromosome, both sequences strongly hybridized to the human X chromosome, with few minor binding sites on autosomes. In particular, on the X chromosome DNA from clone YACG 35 hybridized to the centromeric region and the distal part of the short arm (Xp2.2). On the Y chromosome, the sequence was assigned to one site situated in the border region between Yq1.1 and Yq1.2. DNA from clone 2.8 also hybridized to the centromeric region of the X and the distal part of the short arm (Xq2.2). On the Y, however, two binding sites were observed (Yp1.1 and Yq1.2). The findings indicate that sex chromosomal sequences may be localized in homologous regions (as suggested from meiotic pairing) but also at ectopic sites.  相似文献   

11.
BACKGROUND: Consistent average length differences between species and chromosome arm differences within species indicate that telomere length is genetically determined. This seems to contradict an observed large variation in lengths of the same human telomere between metaphases of the same individual. We examined the extent to which the variation in the telomeres of the human X and Y chromosomes is heritable, induced, or technical in origin. METHODS: Metaphase chromosomes were stained by fluorescence in situ hybridization with a telomere repeat-specific probe, and fluorescence intensities of the X and Y chromosomes were measured. If telomere length variation is predominantly genetically determined and a 50% probability of meiotic recombination between the pseudo-autosomal regions of Yp and Xp in the father is taken into account, one expects an equal chance that the Yp telomere of a son is derived from his father's Xp or Yp telomere. This implies that the Yp/Yq telomere ratios in fathers and sons will be identical in the absence of paternal meiotic recombination and different when recombination occurs. RESULTS: Among five father-son pairs, four showed similar Yp/Yq ratios (P > 0.05), whereas one pair exhibited a large difference in the Yp/Yq ratio that was attributable to a significantly longer Xp than Yp telomere in the father and a presumptive meiotic exchange between X and Y during paternal meiosis. Further, the Xq telomere exhibited a generally shorter telomere length than the others. CONCLUSIONS: The high variation in telomere length appeared to be intracellular (between sister chromatids) and, hence, technical in nature. We found no measurable induced variation in the cells studied, implying that, if induced variation exists, it is small compared with the technical variation.  相似文献   

12.
Summary Early replication of prometaphasic human sex chromosomes was studied with the bromodeoxyuridine (BrdU)-replication technique. The studies reveal that two distal segments of Xp, including bands Xp 22.13 and Xp 22.3, replicate early in S-phase and therefore may not be subject to random inactivation. Furthermore, the replication of these distal segments of Xp occurs synchronously with those of the short arm of the Y chromosome including bands Yp 11.2 and Yp 11.32. These segments of Xp and Yp correspond well to the pairing segment of the X and Y chromosomes where a synaptonemal complex forms at early pachytene of human spermatogenesis. The homologous early replication of Yp and the distal portion of Xp may be interpreted as a remnant left untouched by the differentiation of heteromorphic sex chromosomes from originally homomorphic autosomes. A third early replicating segment is situated on the long arm of the X chromosome and corresponds to band Xq 13.1. This segment may be correlated with the X-inactivation center postulated by Therman et al. (1979).  相似文献   

13.
In dioecious plants of hemp ( Cannabis sativa L.), males are regarded as heterogametic XY and females as homogametic XX, although it is difficult to discriminate the X cytologically from the Y. The Y chromosome is somewhat larger than the X. Our aim was to analyse AFLP markers on X and Y, and to use them to gain some insight into the structure of the sex chromosomes. Markers located on the sex chromosomes can be grouped into different classes, depending on the presence or absence of a fragment on the X and/or the Y. They are detected by separately analysing male and female progenies of a single cross. Five markers were found to be located on both chromosomes. A few recombinants were observed for marker pairs of this class in the male progenies. Two completely linked markers located on the Y chromosome in the male parent show a recombination rate of r = 0.25 with sex. Recombination must have occurred between the sex chromosomes in the male parent. The recombination analysis led to the conclusion that there is a pseudoautosomal region (PAR) on the sex chromosomes, allowing recombination between the X and the Y chromosome. The other regions of the sex chromosomes show only a few recombination events, for the Y as well as for the X. These results are discussed in comparison to other dioecious plants.  相似文献   

14.
The Sxr (sex-reversed) region that carries a copy of the mouse Y chromosomal testis-determining gene can be attached to the distal end of either the Y or the X chromosome. During male meiosis, Sxr recombined freely between the X and Y chromosomes, with an estimated recombination frequency not significantly different from 50% in either direction. During female meiosis, Sxr recombined freely between the X chromosome to which it was attached and an X-autosome translocation. A male mouse carrying the original Sxra region on its Y chromosome, and the shorter Sxrb variant on the X, also showed 50% recombination between the sex chromosomes. Evidence of unequal crossing-over between the two Sxr regions was obtained: using five markers deleted from Sxrb, 3 variant Sxr regions were detected in 159 progeny (1.9%). Four other variants (one from the original cross and three from later generations) were presumed to have been derived from illegitimate pairing and crossing-over between Sxrb and the homologous region on the short arm of the Y chromosome. The generation of new variants throws light on the arrangement of gene loci and other markers within the short arm of the mouse Y chromosome.  相似文献   

15.
16.
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family.  相似文献   

17.
The evolution, inheritance and recombination rate of genes located in the pseudoautosomal region 1 (PAR1) is exceptional within the human genome. Pseudoautosomal genes are identical on X and Y chromosomes and are not inherited in a sex linked manner. Due to an obligatory recombination event in male meiosis, pseudoautosomal genes are exchanged frequently between X and Y chromosomes. During the isolation, characterization and sequencing of a novel gene PPP2R3L, which was classified by sequence homology as a novel member of the protein phosphatase regulatory subunit families, it became apparent that cosmids of different origin harboring this gene are highly polymorphic between individuals, both at the nucleotide level and in the number.  相似文献   

18.
Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.  相似文献   

19.
20.
A specific cloned DNA sequence (Y-367) detects at least four loci in the euchromatic long arm and in the short arm of the human Y chromosome. Deletion mapping assigns one locus to the distal euchromatic long arm, another to a region close to the centromere on either Yq or Yp, and two additional loci to the Y short arm. Y-367 may thus be used for the rapid screening of even complex Y chromosome aberrations. This is exemplified in a 45,X male with Y chromosome material on the long arm of chromosome 10 by the detection of an inversion of a portion of Yp and by the confirmation of duplications and deletions in two individuals with duplications of part of the Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号