首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In smooth muscle cells (SMCs)isolated from rabbit carotid, femoral, and saphenous arteries, relativemyosin isoform mRNA levels were measured in RT-PCR to test forcorrelations between myosin isoform expression and unloaded shorteningvelocity. Unloaded shortening velocity and percent smooth muscle myosinheavy chain 2 (SM2) and myosin light chain 17b(MLC17b) mRNA levels were not significantly different insingle SMCs isolated from the luminal and adluminal regions of thecarotid media. Saphenous artery SMCs shortened significantly faster(P < 0.05) than femoral SMCs and had more SM2 mRNA(P < 0.05) than carotid SMCs and lessMLC17b mRNA (P < 0.001) and higher tissuelevels of SMB mRNA (P < 0.05) than carotid and femoralSMCs. No correlations were found between percent SM2 and percentMLC17b mRNA levels and unloaded shortening velocity in SMCsfrom these arteries. We have previously shown that myosin heavy chain(MHC) SM1/SM2 and SMA/SMB and MLC17a/MLC17b isoform mRNA levels correlate with protein expression for these isoforms in rabbit smooth muscle tissues. Thus we interpret these results to suggest that 1) SMC myosin isoform expression andunloaded shortening velocity do not vary with distance from the lumenof the carotid artery but do vary in arteries located longitudinally within the arterial tree, 2) MHC SM1/SM2 and/orMLC17a/MLC17b isoform expression does notcorrelate with unloaded shortening velocity, and 3)intracellular expression of the MHC SM1/SM2 and MLC17a/MLC17b isoforms is not coregulated.

  相似文献   

2.
Two types of smooth muscle myosin heavy chain (MHC) isoforms, SM1 and SM2, were recently identified to have different carboxyl termini (Nagai, R., Kuro-o, M., Babij, P., and Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). SM1 and SM2 are considered to be generated from a single gene through alternative RNA splicing. In this study we investigated expression of vascular MHC isoforms during development in rabbits at the mRNA, protein, and histological levels. In adults, all smooth muscle cells reacted with both anti-SM1 and anti-SM2 antibodies on immunofluorescence, suggesting the coexpression of SM1 and SM2 in a single cell. In fetal and perinatal rabbits, however, only anti-SM1 antibody consistently reacted with smooth muscles. Reactivity with anti-SM2 antibody was negative in the fetal and neonatal blood vessels and gradually increased during 30 days after birth. These developmental changes in SM1 and SM2 expression at the histological level coincided with mRNA expression of each MHC isoform as determined by S1 nuclease mapping, indicating that expression of SM1 and SM2 is controlled at the level of RNA splicing. However, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of myosin from fetal and perinatal aortas revealed the presence of large amount of SM2. Interestingly, fetal SM2 did not cross-react with our anti-SM2 antibody on immunoblotting. We conclude that expression of SM1 and SM2 are differentially regulated during development and that a third type of MHC isoform may exist in embryonic and perinatal vascular smooth muscles.  相似文献   

3.
4.
To determine whether the release of newly formed mediators such as the peptidoleukotrienes and platelet-activating factor might modulate the food protein induced jejunal smooth muscle contraction observed in sensitized rats, Hooded-Lister rats were sensitized by injection of ovalbumin (10 micrograms i.p.) and controls were sham sensitized with saline. Fourteen days later the contractility of longitudinally (n = 9) and circularly (n = 9) oriented jejunal segments (mucosa intact) were examined in standard tissue baths in response to antigen, leukotrienes, and platelet-activating factor alone and in the presence of a specific leukotriene receptor antagonist (MK-571), a 5-lipoxygenase inhibitor (L651,392), and a platelet-activating factor receptor antagonist (WEB 2086). Although the responses of control and sensitized tissues to stretch and 10(-4) M bethanechol were similar, only sensitized tissues contracted in response to antigen (1 mg/mL). MK-571 (10(-5) M) reduced or significantly inhibited the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M leukotrienes C4, D4, or E4, but neither L651,392 (10(-4) M) nor MK-571 (10(-5) M) significantly reduced the contractile response of sensitized tissues to antigen challenge. WEB 2086 (10(-4) M) significantly (p less than 0.01) reduced the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M platelet-activating factor but did not significantly alter the response to antigen in longitudinally (45% of control, p = 0.14) or circularly (118% of control, ns) oriented jejunal smooth muscle. In this model leukotrienes and platelet-activating factor play an insignificant role in modulating food protein induced jejunal smooth muscle contraction in intestinal anaphylaxis.  相似文献   

5.
6.
Adult rabbit smooth muscles contain two types of myosin heavy chain (MHC) isoforms, SM1 and SM2 which are generated through alternative RNA splicing from a single gene (Nagai, R., Kuro-o, M., Babij, P. & Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). We previously reported that the expression of SM1 and SM2 during vascular development is differentially regulated at the level of RNA splicing, whereby SM1 is constitutively expressed from early development but SM2 appear after birth (Kuro-o, M., Nagai, R., Tsuchimochi, H., Katoh, H., Yazaki, Y., Ohkubo, A. & Takaku, F. (1989) J. Biol. Chem. 264, 18272-18275). We also demonstrated that embryonic vascular smooth muscles contain a third type of MHC isoform, referred to as SMemb in this report, which comigrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with SM2. In the present study we have isolated and characterized a cDNA clone (FSMHC34) for SMemb. FSMHC34 encodes the light meromyosin region including the carboxyl terminus and showed 70% amino acid sequence identity with SM1 or SM2. SMemb is a nonmuscle-type MHC and identical with brain MHC, but clearly distinct from 196-kDa nonmuscle MHC in cultured smooth muscle cells. The expression of SMemb was predominant in embryonic and perinatal aortas, but down-regulated with vascular development. Interestingly SMemb was reexpressed in proliferating smooth muscle cells of arteriosclerotic neointimas. These results suggest that smooth muscle proliferation is coupled to the expression of SMemb and that dedifferentiation of smooth muscles toward the embryonic phenotype is involved in the mechanisms underlying atherosclerosis.  相似文献   

7.
This report describes the morphology of the smooth muscle cells, pericytes, and the perivascular autonomic nerve plexus of blood vessels in the rat mammary gland as visualized by scanning electron microscopy after removal of connective-tissue components. From the differences in cellular morphology, eight vascular segments were identified: 1) terminal arterioles (10-30 microns in outer diameter), with a compact layer of spindle-shaped and circularly oriented smooth muscle cells; 2) precapillary arterioles (6-12 microns), with a less compact layer of branched smooth muscle cells having circular processes; 3) arterial capillaries (4-7 microns), with " spidery " pericytes having mostly circularly oriented processes; 4) true capillaries (3-5 microns), with widely scattered pericytes having longitudinal and several circular processes; 5) venous capillaries (5-8 microns), with spidery pericytes having ramifying processes; 6) postcapillary venules (10-40 microns), with clustered spidery pericytes; 7) collecting venules (30-60 microns), with a discontinuous layer of circularly oriented and elongated stellate or branched spindle-shaped cells which may represent primitive smooth muscle cells; and 8) muscular venules (over 60 microns), with a discontinuous layer of ribbon-like smooth muscle cells having a series of small lateral projections. No focal precapillary sphincters were found. The nerve plexus appears to innervate terminal arterioles densely and precapillary arterioles less densely. Fine nerve fibers are only occasionally associated with arterial capillaries. Venous microvessels in the rat mammary gland seemingly lack innervation.  相似文献   

8.
9.
 Transition from a contractile to a synthetic phenotype appears to be an early key event during the development of intimal thickening after arterial wall injury. We examined the expression of osteopontin mRNA, proliferation, and phenotypic properties of smooth muscle cells (SMCs) in rabbit neointima after balloon denudation and in primary culture. A strong osteopontin mRNA signal was detected in the thickened intima 1 week after balloon denudation and in the surface layer of the intima 2 weeks after balloon denudation. Ki-67 immunohistochemistry showed that osteopontin mRNA expression increased when SMCs entered the proliferating phase in the intima. Rabbit arterial SMCs on type I collagen after 1 day of primary culture with growth factors, as well as freshly isolated cells, were in the G0 phase (contractile phenotype) and did not express osteopontin mRNA. After 3 days of culture, most cells entered the G1B phase (synthetic phenotype) and expressed osteopontin mRNA. In the absence of growth factors, most cells transferred to the G1A phase (intermediate phenotype) after 3 and 7 days, but did not express osteopontin mRNA. Our findings indicate that the osteopontin gene provides a marker that can be used to distinguish the phenotypic properties of vascular SMCs. Accepted: 22 November 1996  相似文献   

10.
11.
Maturation rates of vascular and visceral smooth muscle (SM) during ovine development were compared by quantifying contractile protein, myosin heavy chain (MHC) isoform contents, and contractile properties of aortas and bladders from female fetal (n = 19) and postnatal (n = 21) sheep. Actin, myosin, and protein contents rose progressively throughout development in both tissues (P 相似文献   

12.
The effect of low serum estrogen levels on urinary bladder function remains poorly understood. Using a rabbit model, we analyzed the effects of estrogen on the expression of the isoforms of myosin, the molecular motor for muscle contraction, in detrusor smooth muscle. Expression of myosin heavy chain (MHC) isoforms, which differ in the COOH-terminal (SM1 and SM2) and the NH(2)-terminal (SM-A and SM-B) regions as a result of alternative splicing of the mRNA at either the 3'- or 5'-ends, was analyzed in age-matched female rabbits that were sham operated, ovariectomized (Ovx), and given estrogen after ovariectomy (4 rabbits/group). Ovx rabbits showed a significant decrease in the overall MHC content per gram of wet detrusor smooth muscle compared with controls (P < 0.04), which was reversed by estrogen replacement (P < 0.02). MHC content, as a proportion of total milligram of protein in the bladder tissue extracted, was also increased in estrogen-treated Ovx rabbits. Quantitative competitive RT-PCR revealed 1.72-, 2.63-, and 5.82 x 10(6) copies of MHC mRNA/100 ng total mRNA in Ovx, control, and estrogen-treated rabbits, respectively (P < 0.01). RT-PCR analysis using oligonucleotides specific for the region containing the SM1/SM2 MHC alternative splice sites indicated a lower SM2-to-SM1 ratio in estrogen-treated compared with control and Ovx rabbits (P < 0.05). Similarly, SDS-PAGE analysis of extracted myosin from estrogen-treated rabbits revealed a significantly lower SM2-to-SM1 isoform ratio compared with control and Ovx rabbits (P < 0.05). Expression of the SM-A and SM-B isoforms was not affected. These results indicate that myosin content is increased upon estrogen replacement in Ovx rabbits and that the abundance of SM1 relative to SM2 is greater in estrogen-treated rabbits compared with normal and Ovx rabbits. These data suggest that estrogen affects alternative splicing at the 3'-end of the MHC pre-mRNA to increase the proportion of SM1 vs. SM2.  相似文献   

13.
Vascular endothelial Flt-1 and other stem cell markers are variably expressed in vascular smooth muscle cells (SMCs) during normal and pathological conditions, but their biological role remains uncertain. In normal rat aorta, rare flt-1+ and c-kit+ SMCs were detected. Fifteen days after injury, 61.8+3.8, 45.7+3% of the intimal cells resulted flt-1+ and c-kit+ and expressed low level of alpha-smooth muscle actin; CD133+ cells were 5.6+0.7%. BrDU+/flt-1+ largely predominated in the neointima, whereas BrDU+/CD133+ cells were rare. Forty-five and sixty days after injury, intimal proliferation such as BrDU+ cells was greatly reduced. After sixty days, intimal stem marker expression had almost disappeared whereas alpha-smooth muscle actin was restored. Flk-1 and Oct-4 SMC immunodection was consistently negative. In vitro, intimal cells obtained fifteen days after injury exhibited an epithelioid phenotype and increased flt-1 and c-kit protein and mRNA and low smooth muscle markers compared to spindle-shaped medial and intimal SMCs obtained after sixty days. Epithelioid clones, independently from layer of origin, were similar in stem cell marker expression. The anti-flt-1 blocking antibody added to epithelioid SMC cultures reduced serum-deprived apoptosis and migration but not PDGF-BB-induced proliferation, and increased cell-populated collagen lattice contraction. In conclusion, stem marker expression in vascular SMCs was variable, chronologically regulated and prevailed in epithelioid populations and clones; among stem markers, flt-1 expression critically regulates intimal SMC response to microenviromental changes.  相似文献   

14.
To describe phenotypic changes of human aortic smooth muscle cells (SMCs), proportion of smooth muscle and nonmuscle variants of actin, myosin heavy chains (MHCs), vinculin, and caldesmon, during prenatal and several months of postnatal development was determined. In aortic SMCs from 9-10-week-old fetus, both nonmuscle and smooth muscle-specific variants of all four proteins were present, however, the nonmuscle forms were more abundant. During development, a shift towards the expression of muscle-specific variants was observed, although the time course of changes in protein variant content was not similar for all the proteins studied. By the 24th week of gestation, fractional content of alpha-smooth muscle actin and smooth muscle MHCs was rather close to that in the mature SMCs, and comprised approximately 80 and 90%, respectively, of the levels characteristic of SMCs from adult aortic media. On the contrary, fractional ratio of meta-vinculin and 150-kDa caldesmon was still rather low in the aorta from the 24-week-old fetus, did not increase in a 2-month-old child aorta, and did not reach the level characteristic of mature SMCs even in the 6-month-old child aorta. Thus changes in alpha-smooth muscle actin and smooth muscle MHC fractional content occur mainly during the prenatal period of development, before the 24th week of gestation; while meta-vinculin and the 150-kDa caldesmon proportion increases mainly in the postnatal period, during several months after birth. In the "Discussion," phenotypes of SMCs from developing aorta were compared to those from different layers of the adult aortic wall.  相似文献   

15.
16.
17.
Closure of the ductus arteriosus (DA) at birth is essential for the transition from fetal to postnatal life. Before birth the DA bypasses the uninflated lungs by shunting blood from the pulmonary trunk into the systemic circulation. The molecular mechanism underlying DA closure and degeneration has not been fully elucidated, but is associated with apoptosis and cytolytic necrosis in the inner media and intima. We detected features of histology during DA degeneration that are comparable to Hutchinson Gilford Progeria syndrome and ageing. Immunohistochemistry on human fetal and neonatal DA, and aorta showed that lamin A/C was expressed in all layers of the vessel wall. As a novel finding we report that progerin, a splicing variant of lamin A/C was expressed almost selectively in the normal closing neonatal DA, from which we hypothesized that progerin is involved in DA closure. Progerin was detected in 16.2%±7.2 cells of the DA. Progerin-expressing cells were predominantly located in intima and inner media where cytolytic necrosis accompanied by apoptosis will develop. Concomitantly we found loss of α-smooth muscle actin as well as reduced lamin A/C expression compared to the fetal and non-closing DA. In cells of the adjacent aorta, that remains patent, progerin expression was only sporadically detected in 2.5%±1.5 of the cells. Data were substantiated by the detection of mRNA of progerin in the neonatal DA but not in the aorta, by PCR and sequencing analysis. The fetal DA and the non-closing persistent DA did not present with progerin expressing cells. Our analysis revealed that the spatiotemporal expression of lamin A/C and progerin in the neonatal DA was mutually exclusive. We suggest that activation of LMNA alternative splicing is involved in vascular remodeling in the circulatory system during normal neonatal DA closure.  相似文献   

18.
The effects of diethylstilbestrol (DES) treatment on myometrial development from the prenatal to adult period were examined in rats and mice by histologic and immunocytochemical methods using anti-actin, -vimentin, and -laminin to assess cytodifferentiation of smooth muscle and fibroblastic cells, and by morphometric procedures to assess quantitatively the effect of DES on the expression of cellular orientation in the emerging inner circular myometrial layer. Neonatal rats and mice were treated with DES from day 0 (day of birth) to day 2 with dosages known to perturb myometrial development. Neonatal treatment with DES increased the degree of circular orientation within the uterine mesenchyme, an effect detectable following as little as 24 hr of DES treatment. This effect on spatial organization of the mesenchyme was followed by an increase in the thickness of the actin-positive middle layer (prospective circular myometrium) of uterine mesenchyme during days 3-15; from day 15 onward, however, the circular myometrial layer began to fragment into irregular bundles of smooth muscle, and the longitudinal myometrial layer became thinner and more irregularly organized than controls. Vimentin localization in rats treated with DES neonatally was more intense than in controls within the circularly orientated uterine mesenchyme at 5 days. By 60 days the circular and longitudinal myometrial layers of DES-treated animals showed strands and bundles of vimentin-positive cells, which were not present in controls. Both rats and mice show comparable effects of DES treatment.  相似文献   

19.
Smooth muscle cells express isoforms of actin and myosin heavy chains (MHC). In early postnatal animals the nonmuscle (NM) actin and MHC isoforms in vascular (aorta) smooth muscle were present in relatively high percentages. More than 30% of the MHC and 40% of the actin isoforms were NM. The relative percentage of the NM isoforms decreased significantly as the animals reached maturity, with NM MHC less than 10% and NM actin less than 30% of the totals. Concurrent with this decrease in NM isoforms was an increase in the smooth muscle (SM) isoforms. The relative changes and time frame in which these changes occurred were very similar for the actin and MHC isoforms. In arterial tissue there were species differences for changes with development in the two SM MHC isoforms (SM1 and SM2). The ratio of SM1:SM2 in young rat aorta was approximately 0.5, while this same ratio was approximately 3 in young swine carotid. Both adult rats and swine had a SM1:SM2 MHC ratio of approximately 1.2. Rat bladder smooth muscle showed no significant change in NM vs SM ratio between young and old rats, while the SM1:SM2 ratio decreased from 2.7 to 1.7 between these age groups. The shifts in alpha and beta actin were similar to those in the vascular tissue, but of much smaller magnitude.  相似文献   

20.
Liu H  Ning H  Men H  Hou R  Fu M  Zhang H  Liu J 《PloS one》2012,7(1):e30873
Chemokines play a crucial role in inflammation and in the pathophysiology of atherosclerosis by recruiting inflammatory immune cells to the endothelium. Chemokine CCL5 has been shown to be involved in atherosclerosis progression. However, little is known about how CCL5 is regulated in vascular smooth muscle cells. In this study we report that CCL5 mRNA expression was induced and peaked in aorta at day 7 and then declined after balloon artery injury, whereas IP-10 and MCP-1 mRNA expression were induced and peaked at day 3 and then rapidly declined.The expression of CCL5 receptors (CCR1, 3 & 5) were also rapidly induced and then declined except CCR5 which expression was still relatively high at day 14 after balloon injury. In rat smooth muscle cells (SMCs), similar as in aorta CCL5 mRNA expression was induced and kept increasing after LPS plus IFN-gamma stimulation, whereas IP-10 mRNA expression was rapidly induced and then declined. Our data further indicate that induction of CCL5 expression in SMCs was mediated by IRF-1 via binding to the IRF-1 response element in CCL5 promoter. Moreover, p38 MAPK was involved in suppression of CCL5 and IP-10 expression in SMCs through common upstream molecule MKK3. The downstream molecule MK2 was required for p38-mediated CCL5 but not IP-10 inhibition. Our findings indicate that CCL5 induction in aorta and SMCs is mediated by IRF-1 while activation of p38 MAPK signaling inhibits CCL5 and IP-10 expression. Methods targeting MK2 expression could be used to selectively regulate CCL5 but not IP-10 expression in SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号