首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. In higher plants, fructose bisphosphate aldolase (EC 4.1.2.13) occurs in chloroplast, cytosol, and nucleus. Immunocytolocalization experiments with isozyme-directed antibodies indicate that both chloroplastic and cytosolic aldolase isoforms are present in the pea (Pisum sativum L.) leaf nucleus. Correspondence and reprints: Department of Biological Sciences m/c 066, University of Illinois-Chicago, 845 West Taylor, Chicago, Illinois 60607-7060, U.S.A.  相似文献   

2.
Nearest neighbor analysis of immunocytolocalization experiments indicates that the enzymes glyceraldehyde-3-P dehydrogenase, triose-P isomerase and aldolase are located close to one another in the pea leaf chloroplast stroma, and that aldolase is located close to sedoheptulose bisphosphatase. Direct transfer of the triose phosphates between glyceraldehyde-3-P dehydrogenase and triose-P isomerase, and from glyceraldehyde-3-P dehydrogenase and triose-P isomerase to aldolase, is then a possibility, as is direct transfer of sedoheptulose bisphosphate from aldolase to sedoheptulose bisphosphatase. Spatial organization of these enzymes may be important for efficient CO2 fixation in photosynthetic organisms. In contrast, there is no indication that fructose bisphosphatase is co-localized with aldolase, and direct transfer of fructose bisphosphate from aldolase to fructose bisphosphatase seems unlikely.  相似文献   

3.
4.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

5.
One of the unsolved problems in plant biochemistry has been the identification of the regulatory cysteines in the reductively light-activated and -inactivated chloroplast enzymes. Homology modeling based on the sequences of these enzymes and the three-dimensional structures of homologous enzymes has now allowed tentative identification of the redox-sensitive Cys residues in four light-activated chloroplast enzymes. In each case the regulatory disulfides are not positioned in the active site but instead appear to be positioned so as to affect the flexibility or the conformation of the enzyme, and thereby to affect catalysis. In glyceraldehyde-3-P dehydrogenase and malate dehydrogenase inter-domain movement would be restricted. In fructose bisphosphatase and sedoheptulose bisphosphatase the regulatory Cys residues are located on the nucleotide binding domain in a region known to be sensitive to an allosteric effector of other fructose bisphosphatases. Results of site-directed mutagenesis experiments to date are in general agreement with the domain-locking hypothesis. The redox sensitivity of a number of cytosolic enzymes suggests that reductive modulation might occur outside of the chloroplast in leaves, and in the roots, stems and germinating seeds of green plants. Our better understanding of the mechanism of redox regulation may lead to new approaches for the regulation of enzyme activity with biotechnological applications.  相似文献   

6.
A mechanism is proposed for a feed-forward control of photosynthetic sucrose synthesis, which allows withdrawal of carbon from the chloroplast for sucrose synthesis to be coordinated with the rate of carbon fixation. (a) Decreasing the rate of photosynthesis of spinach (Spinacia oleracea, U.S. hybrid 424) leaf discs by limiting light intensities or CO2 concentrations leads to a 2-to 4-fold increase in fructose 2,6-bisphosphate. (b) This increase can be accounted for by lower concentrations of metabolites which inhibit the synthesis of fructose 2,6-bisphosphate, such as dihydroxyacetone phosphate and 3-phosphoglycerate. (c) Thus, as photosynthesis decreases, lower levels of dihydroxyacetone phosphate should inhibit the cytosolic fructose bisphosphatase via simultaneously lowering the concentration of the substrate fructose 1,6-bisphosphate, and raising the concentration of the inhibitor fructose 2,6-bisphosphate.  相似文献   

7.
Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase is powerfully inhibited by Ca2+ non-competitively with respect to its substrate, fructose 1,6-bisphosphate. 500 microM-Ca2+ causes virtually complete inhibition and the Ki is 40 microM. Severe inhibition of sedoheptulose bisphosphatase is also caused by Ca2+. A role for Ca2+ in regulation of the Calvin cycle in spinach chloroplasts is proposed.  相似文献   

8.
利用JSM-6360LV型扫描电镜和JEM-1010型透射电镜,观察了南美蟛蜞菊、蟛蜞菊及其自然杂交种新近成熟和老熟叶片的解剖结构及叶绿体超微结构。结果表明:遮荫后该杂交种与其亲本新近成熟叶片均表现为上下表皮气孔密度、叶片总厚度及上下表皮厚度、栅栏组织、海绵组织厚度减小,叶绿体肿胀变形,基粒片层垛叠程度增加,淀粉粒增多变大;遮荫后杂交种老熟叶片总厚度及上表皮、栅栏组织、海绵组织厚度增加,入侵种的下表皮厚度及本地种的上表皮厚度增加,叶绿体超微结构在遮荫后均出现严重损伤,基粒片层类囊体结构边缘溶解等。说明三种蟛蜞菊属物种及各物种不同叶龄叶片对弱光条件的响应存在差异;杂交种叶片显微及超微结构在不同光照下的变化介于亲本之间,对遮荫环境能较好适应。  相似文献   

9.
10.
The role of fructose 2,6 bisphosphate in partitioning of photosynthate between sucrose and starch has been studied in spinach (Spinacia oleracea U.S. hybrid 424). Spinach leaf material was pretreated to alter the sucrose content, so that the rate of starch synthesis could be varied. The level of fructose 2,6-bisphosphate and other metabolites was then related to the accumulation of sucrose and the rate of starch synthesis. The results show that fructose 2,6-bisphosphate is involved in a sequence of events which provide a fine control of sucrose synthesis so that more photosynthate is diverted into starch in conditions when sucrose has accumulated to high levels in the leaf tissue. (a) As sucrose levels in the leaf rise, there is an accumulation of triose phosphates and hexose phosphates, implying an inhibition of sucrose phosphate synthase and cytosolic fructose 1,6-bisphosphatase. (b) In these conditions, fructose 2,6-bisphosphate increases. (c) The increased fructose 2,6-bisphosphate can be accounted for by the increased fructose 6-phosphate in the leaf. (d) Fructose 2,6-bisphosphate inhibits the cytosolic fructose 1,6-bisphosphatase so more photosynthate is retained in the chloroplast, and converted to starch.  相似文献   

11.
Changes in chloroplast number during pea leaf development   总被引:3,自引:0,他引:3  
Protoplasts were prepared from pea (Pisum sativum L.) leaves throughout development and their contents spread in a monolayer to determine the number of chloroplasts per cell. This approach permitted the rapid analysis of more than 100 cells at each stage of development. The average number of chloroplasts per cell increased from 24±10 to 64±20 during greening and expansion of the first true foliage leaves; all cells containing chloroplasts apparently increase their chloroplast number. A parallel increase in the amount of DNA per nucleus was not observed. As the leaves senesced the chloroplast number gradually decreased to 44±12. We have correlated these changes with our previous results on the percentage of chloroplast DNA per cell. Chloroplast multiplication resulted in a 2.7-fold dilution (from 272 to 102) of the number of copies of the chloroplast DNA molecule per plastid.  相似文献   

12.
One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::δ-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.  相似文献   

13.
C. M. Bowman 《Planta》1986,167(2):264-274
The possibility of estimating the proportion of chloroplast DNA (ctDNA) and nuclear DNA (nDNA) in nucleic-acid extracts by selective digestion with the methylation-sensitive restriction enzyme PstI, was tested using leaf extracts from Spinacia oleracea and Triticum aestivum. Values of ctDNA as percentage nDNA were estimated to be 14.58%±0.56 (SE) in S. oleracea leaves and 4.97%±0.36 (SE) in T. aestivum leaves. These estimates agree well with those already reported for the same type of leaf material. Selective digestion and quantitative dot-blot hybridisation were used to determine ctDNA as percentage nDNA in expanded leaf tissue from species of Triticum and Aegilops representing three levels of nuclear ploidy and six types of cytoplasm. No significant differences in leaf ctDNA content were detected: in the diploids the leaf ctDNA percentage ranged between 3.8% and 5.1%, and in the polyploids between 3.5% and 4.9%. Consequently, nuclear ploidy and nDNA amount were proportional to ctDNA amount (r(19)=0.935, P>0.01) and hence to ctDNA copy number in the mature mesophyll cells of these species. There was a slight increase in ctDNA copy numbers per chloroplast at higher ploidy levels. The balance between numbers of nuclear and chloroplast genomes is discussed in relation to polyploidisation and to the nuclear control of ctDNA replication.Abbreviations ctDNA chloroplast DNA - nDNA nuclear DNA - RuBPCase ribulose-1,5-bisphosphate carboxylase - DAPI 4,6-diamidine-2-phenylindole  相似文献   

14.
Sources of Carbon for Export from Spinach Leaves throughout the Day   总被引:7,自引:3,他引:4       下载免费PDF全文
Rates of net carbon exchange, export, starch, and sucrose synthesis were measured in leaves of spinach (Spinacia oleracea L.) throughout a 14-hour period of sinusoidal light to determine the sources of carbon contributing to export. Net carbon exchange rate closely followed light level, but export remained relatively constant throughout the day. In the morning when photosynthesis was low, starch degradation provided most of the carbon for export, while accumulated sucrose was exported during the evening. At high photosynthesis rate, the regulatory metabolite fructose 2,6-bisphosphate was low, allowing more of the newly fixed carbon to flow to sucrose through cytosolic fructose bisphosphatase. When the rate of sucrose synthesis exceeded the rate of export from the leaf, sucrose accumulated and soon thereafter sucrose synthesis declined. A decreasing sucrose synthesis rate resulted in additional carbon moving to the synthesis of starch, which was maintained throughout the remainder of the day. The declining sucrose synthesis rate coincided with decreasing activity of sucrose phosphate synthase present in gel-filtered leaf extracts. A rise in the leaf levels of uridine diphosphoglucose and fructose 6-phosphate throughout the day was consistent with this declining activity.  相似文献   

15.
Freshly purified spinach chloroplast fructose bisphosphatase is powerfully inhibited by inorganic phosphate competitively with respect to its substrate fructose 1,6-bisphosphate. The concentrations of phosphate and substrate in the chloroplast stroma are such that the enzyme in this form could not operate at a significant rate in vivo. Incubation of the enzyme with dithiothreitol for 24 h decreases the Km for fructose 1,6-bisphosphate from 0.8 to 0.033 mM, decreases the Km for Mg2+ from 9 to 2 mM and substantially alleviates inhibition by inorganic phosphate. The physiological significance of thiol activation of the enzyme is discussed.  相似文献   

16.
Steady-state mRNA levels for three Hsp70s were found to be regulated by a distinctive light/dark mechanism in spinach leaves. Messenger RNAs for the chloroplast stromal and two cytosolic forms displayed a diurnal expression pattern under isothermal conditions that appeared to be independent of circadian control. While protein blot data showed relatively constant Hsp70 protein levels, the higher Hsp70 mRNA levels in the light paralleled the diurnal cycle of total cell protein synthesis. Fractionation studies showed that the major cytosolic Hsp70 cognate group was associated with polysomes. Therefore, the variation of Hsp70 mRNAs is consistent with the diurnal metabolic activity of plant photosynthetic cells in which the demand of protein biogenesis for chaperone function and tissue temperature are highest during the day.  相似文献   

17.
N. Inada  A. Sakai  H. Kuroiwa  T. Kuroiwa 《Protoplasma》1999,207(3-4):222-232
Summary Previously, we showed that all greening mesophyll cells in the coleoptiles of rice (Oryza sauva L. cv. Nippon-bare) follow the identical program of senescence, which features the early degradation of chloroplast DNA (cpDNA) and subsequent nuclear condensation and disorganization. Following the coleoptile study, we analyzed the senescence-associated changes in the blade of the second leaf of rice at the tissue and cellular levels. Under the experimental conditions, the second leaf started to elongate rapidly 2 days after sowing and emerged on day 3. The blade of the second leaf completed its growth on day 4, although the sheath continued to grow until day 7. The amount of soluble protein and chlorophyll (Chl) per blade reached a maximum on day 7, and then declined. When blades were divided into three parts (the tip, mid-region, and base), levels of both soluble protein and Chl in the tip segment peaked earlier and decreased at a faster rate than in the other parts, demonstrating a longitudinal gradient of senescence from the tip to the base of the blade. In cross sections through the center of the tip and base segments, all the mesophyll cells senesced synchronously. They passed through the following steps in order: (i) degradation of cpDNA, (ii) decrease in the size of the chloroplast with degeneration of the chloroplast inner membranes, and (iii) condensation and disorganization of the nuclei. Although some differences were shown between the coleoptile and the second leaf in the timing and rate of each event, the order of those senescence-related events was conserved, suggesting an identical program of senescence exists in rice leaves.Abbreviations Chl chlorophyll - cpDNA chloroplast DNA - cpnucleoid chloroplast nucleoid - DAPI 4,6-diamidino-2-phenylindole - DiOC7 3,3-dihexyloxacarbocyanine iodide - VB vascular bundle - VIMPCS video-intensified microscope photon-counting system  相似文献   

18.
The changes in the levels of proline, sugar and soluble protein during leaf rolling and its relationship to osmotic adjustment were studied in laboratory conditions. Upon irrigation of plants which have rolled leaves, many sugar crystals occurred on the abaxial surface of the leaves in Ctenanthe setosa (Rosc.) Eichler. The sugar crystals were determined to have sucrose, glucose and fructose. The levels of reducing sugars and proline are higher in rolled leaves while soluble protein levels in rolled leaves are lower than those of unrolled leaves. It was found 1–3, 9–13, 16–21 and 24–28 crystals at degree of leaf rolling 23, 28, 47 and 52%, respectively. Finally, we found a significant correlation between the crystal number and degree of leaf rolling in Ctenanthe setosa. In addition, soluble sugars are found predominant accumulating solute in the plant and are of major importance as a contributor to osmotic adjustment during leaf rolling.  相似文献   

19.
Maltose is the major form of carbon exported from the chloroplast at night   总被引:14,自引:0,他引:14  
Weise SE  Weber AP  Sharkey TD 《Planta》2004,218(3):474-482
Transitory starch is formed in chloroplasts during the day and broken down at night. We investigated carbon export from chloroplasts resulting from transitory-starch breakdown. Starch-filled chloroplasts from spinach (Spinacia oleracea L. cv. Nordic IV) were isolated 1 h after the beginning of the dark period and incubated for 2.5 h, followed by centrifugation through silicone oil. Exported products were measured in the incubation medium to avoid measuring compounds retained inside the chloroplasts. Maltose and glucose made up 85% of the total exported products and were exported at rates of 626 and 309 nmol C mg–1 chlorophyll h–1, respectively. Net export of phosphorylated products was less than 5% and higher maltodextrins were not detected. Maltose levels in leaves of bean (Phaseolus vulgaris L. cv. Linden), spinach, and Arabidopsis thaliana (L.) Heynh. were low in the light and high in the dark. Maltose levels remained low and unchanged during the light/dark cycle in two starch-deficient Arabidopsis mutants, stf1, deficient in plastid phosphoglucomutase, and pgi, deficient in plastid phosphoglucoisomerase. Through the use of nonaqueous fractionation, we determined that maltose was distributed equally between the chloroplast and cytosolic fractions during darkness. In the light there was approximately 24% more maltose in the cytosol than the chloroplast. Taken together these data indicate that maltose is the major form of carbon exported from the chloroplast at night as a result of starch breakdown. We hypothesize that the hydrolytic pathway for transitory-starch degradation is the primary pathway used when starch is being converted to sucrose and that the phosphorolytic pathway provides carbon for other purposes.Abbreviations CAM crassulacean acid metabolism - Chl chlorophyll - DHAP dihydroxyacetone phosphate - FBPase fructose bisphosphatase - GAP glyceraldehyde-3-phosphate - G6P glucose 6-phosphate - PGA 3-phosphoglycerate - TPT triose phosphate translocator - WT wild type  相似文献   

20.
Levels of fructose 2,6-bisphosphate (F2,6BP) and related metabolites were measured in 8- or 9-day-old barley (Hordeum vulgare L.) primary leaves throughout a 24 hour cycle. Young barley leaves contained about 0.4 nanomole F2,6BP per milligram chlorophyll at the end of a 12 hour dark period. F2,6BP levels increased rapidly following a dark-to-light transition and then decreased to about 0.1 nanomole per milligram chlorophyll after 5 or 10 minutes of light. Low levels of F2,6BP were detected in barley primary leaves throughout the day. A 10-fold increase in F2,6BP was observed during the first hour of the dark period and then levels of this metabolite decreased slowly for the next several hours. Only small diurnal fluctuations were noted in barley leaf glucose 6-phosphate and uridine 5′-diphosphoglucose levels. There were rapid changes in whole leaf F2,6BP levels when the light intensity was altered. High F2,6BP levels in the dark were not observed after short photosynthetic periods. Results obtained with barley primary leaves support the suggestion that F2,6BP is involved in regulating the flow of photosynthate from the chloroplast to sucrose. Extractable sucrose-phosphate synthase activity was inversely related to barley primary leaf F2,6BP levels. This finding may indicate that the activities of sucrose-phosphate synthase and cytosolic fructose 1,6-bisphosphatase in barley primary leaves are metabolically coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号