首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response to aluminium concentrations was evaluated for birch seedlings ( Betula pendula Roth, formerly Betula verrucosa Ehrh.) by using a growth technique that provides stable internal concentrations of nutrients in plants. Aluminium was added as aluminium nitrate and aluminium chloride and pH was kept at 3.8±0.2 by adding HCl or NaOH. The seedlings were grown in two different series of nutrient treatments, either with near-optimum conditions (relative addition rate 25% day−1) or with constant nutrient stress (relative addition rate 10% day−1) before the aluminium addition. Growth reduction occurred at aluminium concentrations greater than 3 m M , and lethal effects at aluminium concentrations greater than 15 m M . In plants subjected to near-optimum conditions before aluminium addition, the internal nutrient concentrations decreased with increasing aluminium concentration for all macronutrients. The concentration of the macronutrients N, K and P decreased gradually with increasing aluminium concentration, while the concentration of Ca and Mg decreased fairly abruptly when aluminium concentrations exceeded 1 m M . The same tendency was observed in nutrient stressed birch seedlings, but the pattern was more scattered. Relative growth rate of the seedlings was not affected by a low Ca/Al ratio. In all treatments, the molar Ca/Al ratio in/on the roots was below 0.2 at the end of the experiments. As decrease in growth occurs only at high aluminium concentrations, there is no reason to suggest that aluminium in acid soils is growth limiting for natural birch stands.  相似文献   

2.
Ectomycorrhizal seedlings of Scots pine ( Pinus sylvestris L. cv.), inoculated with the fungus Suillus bovinus (L. ex Fr.) O. Kuntze, and non-mycorrhizal controls were grown in growth units with a circulating culture solution. Steady-state nutrition and constant relative growth rates were achieved by means of varied relative nutrient addition rates and free access of nutrients. Typical mycorrhizas always formed within a short period of time after inoculation. The nutrition/growth relationships were in principle similar to previous studies under steady-state conditions: there were close linear relationships between relative addition rate, relative growth rate and internal nitrogen concentration, i.e. an equilibrium established between nutrients added and taken up. This occurred when infected and uninfected seedlings were grown separately. When grown together in the same growth unit, there are indications that the fungus influenced the exudation pattern of the uninfected seedlings. More carbon was thus provided to the unspecified microflora in the cultivation system, and it was able to grow and withhold nitrogen from the seedlings. The mycorrhizal infection did not increase the specific uptake capacity of the roots, and the fungus constituted a sink for carbon. However, the nitrogen productivity (growth rate per unit of nitrogen per unit of time) was similar for mycorrhizal and non-mycorrhizal seedlings, so that there might be mechanisms which compensate for the carbon cost.  相似文献   

3.
The growth of two provenances of Pinus sylvestris L. were compared with two provenances of Picea abies (L.) Karst. and with Pinus contorta Dougl. when grown in solution cultures with low nutrient concentrations. Nitrogen was added at different exponentially increasing rates, and the other nutrients were added at a rate high enough to ensure free access of them to the seedlings. During an initial period of the culture (a lag phase), when the internal nutrient status was changing from optimum to the level of the treatment, deficiency symptoms appeared. The needles yellowed and the root/shoot ratio increased. The initial phase was followed by a period of exponential growth and steady-state nutrition. The needles turned green again, and the root/shoot ratio stabilized at a level characteristic of the treatment. These patterns were the same as previously reported for other tree species. The relative growth rate during exponential growth was numerically closely equal to the relative nitrogen addition rate. The maximum relative growth rates were about 6 to 7.5% dry weight increase day-1. This is a much lower maximum than for broad-leaved species (about 20 to 30% day-1) under similar growth conditions. The internal nitrogen concentrations of the seedlings and the relative growth rates were stable during the exponential period. Close linear relationships were found between these parameters and the relative addition rate up to maximum growth. During steady state the relative growth rates of the different plant parts were equal. However, there were large differences between genotypes in absolute root growth rate at the same seedling size because of differences in root/shoot ratio. Lodgepole pine had the highest root growth rate, whereas that of Norway spruce, especially the southern provenance, was remarkably low. Yet, Norway spruce had a high ability to utilize available nutrients. In treatments with free nutrient access, growth allocation to the shoot had a high priority in all genotypes, but there was still a marked tendency for luxury uptake of nutrients. Nitrogen productivity (growth rate per unit of nitrogen) was lower than in broadleaved species and highest in lodgepole pine. The relevance of the dynamic factors, i.e. maximum relative growth rate, nutrient uptake rate, nitrogen productivity, growth allocation and root growth rate, are discussed with regard to conifer characteristics and selection value.  相似文献   

4.
In vivo nitrate reductase (EC 1.6.6.1) activity was measured in seedlings of Scots pine ( Pinus sylvestris L.) inoculated with Cenococcum geophilum (Sow.) Ferd. & Winge, Paxillus involutus (Batsch:Fr) Fr, Piloderma croceum Erikss, & Hjortst, and Suillus variegatus (Fr.) O. Kuntze. The activity was higher in the mycorrhizal pine roots than was previously found in the fungus symbiont alone, but lower than in the roots of nonmycorrhizal pine seedlings. The differences observed in a previous study between the fungal species under pure culture conditions were not found in the present work for mycorrhiza synthezised with the same fungal species. An increase in the nitrate concentration of the nutrient solution increased the proportion of the nitrate reductase activity in the needles. The mycorrhizal root tips had higher nitrate reductase activity than nonmycorrhizal root tips in the same root system.  相似文献   

5.
Birch (Betula verrucosa Ehrh.) and grey alder (Alnus incana Moench) seedlings were grown with varied relative addition rates of all nutrients, up to optimum for vegetative growth. The root medium was basically distilled water to which the nutrients, contained in stock solutions in fixed proportions, were added every second hour and in exponentially increased amounts for consumption during the subsequent period. The nutrient weight proportions previously found to be required in birch (100 N:65 K:13 P) were used in all treatments. However, the nutrient proportions required in grey alder were found to be somewhat different (100 N:50 K:18 P). The use of the required proportions in the additions was important for maintenance of maximum growth, efficient nutrient utilization, and low concentrations in the root medium. Luxury consumption and inefficiency occurred at high concentrations. The results show that the nutrient requirements are sufficiently defined, for different relative growth rates, by the nutrient proportions and the relative addition rate. No clear relationships were found between conductivity or concentration in the root medium and the addition rate, net uptake rate, nutrient status, or relative growth rate. The results are in good agreement with data from low concentration and depletion experiments reported in the literature, showing that non-limited uptake rates occur down to very low concentrations. Thus, there is strong evidence that concentration has been incorrectly used when applied as the treatment variable for plant nutrition in plant science and cultivation practice. The dominant factors in sub-optimum and optimum nutrition are the amounts of nutrients available per unit of time, the growth rate, and the nutrient proportions. At low concentration levels, physical factors such as stirring and flow rate of nutrient solution and boundary layer effects are decisive for the rates with which the nutrients become available to the roots. Therefore, at low levels, concentration alone cannot be used as the factor determining nutrient uptake rate. At high levels, concentration is effective as a supra-optimum factor and increased internal percentage contents cause decreased uptake efficiency, thus counter-acting the concentration effect. Nitrogen effects dominated the stress indications when the internal nitrogen percentage content decreased from optimum to the level of the treatments in the beginning of the experiments. Leaf deficiency symptoms disappeared and the root/shoot ratio change ceased when nitrogen status stabilized. Strong linear regressions were found between any two of the variables: relative addition rate of nutrients, relative growth rate, and nutrient status.  相似文献   

6.
The aim of this investigation was to estimate the optimum nutrient requirements and responses to low relative nutrient addition rates of seedlings of two important broadleaf tree species in China, Populus simonii Carr. and Paulownia tomentosa (Thunb.) Steud. In preliminary experiments the optimum nutrient proportions were estimated under high concentration conditions. The nutrients consumed were replaced by means of daily additions determined by pH and conductivity titrations without changing the nutrient solutions. A relatively high K level was needed in relation to nitrogen; higher than in birch or grey alder seedlings. To obtain a high relative growth rate, suitable proportions by weight were 100 N:70 K:14 P:7 Ca:7 Mg for the Populus seedlings and 100 N:75 K:20 P:8 Ca:9 Mg for the Paulownia seedlings.
In studies of nutrient stress responses the relative nutrient addition rate was used as the treatment variable under low conductivity conditions. The responses and relationships were similar to those described for birch, grey alder and Salix . The relative addition rate, and there was also a strong linear regression between relative growth rate and nitrogen status. Relative growth rates were high and the maximum weight increase was about 19% day−1 in Populus and over 25% day−1 in Paulownia . The nitrogen productivity of Paulownia was very high, 0.26 g dry weight (g N)−1 h−1, and for Populus it was 0.16 g dry weight (g N)−1 h−1.  相似文献   

7.
The relative uptake rates of N, P, K, S, Ca, Mg, Fe, Mn, Zn, Cu, and Al were estimated in beech seedlings pot cultured in the field in six acid soils (treatments). The relative uptake rates were compared with the relative growth rates. The relative uptake rates of N, K and Ca agreed well with the growth rates of the seedlings irrespective of widely differing soil conditions (acid sand-clayey till, pH 4–6). The relative uptake rates of P, Fe, and Al differed from that predicted by the growth rate. The uptake rates of Fe and Al were highest at the lowest growth rates, and the P uptake rate was lower than the growth rate in these treatments. Thus the P availability probably limited growth in an eluvial (E) horizon of a podzol, and possibly in the illuvial (B) horizon of a podzol and in an acid clayey till (Dystric Cambisol). Low P uptake was associated with a tendency towards higher relative root growth rates. In terms of the concept of steady state nutrition the high relative root growth rate in some treatments may be interpreted as an acclimation to low P supply. The P limitation seemed to be related to interactions among Fe, Al and organic compounds of the soil solution.FAX no: +4646104423  相似文献   

8.
采用牛磺酸溶液培育小麦幼苗,测定10、100、500、1 000、5 000 mg/L的牛磺酸对小麦幼苗的光合作用PS Ⅱ光化学效率、细胞膜相对透性和膜脂过氧化以及生长的影响.结果表明,与对照组相比,适宜浓度的牛磺酸处理可促进小麦幼苗的生长,使其根长、株高、单株幼苗的干重和鲜重增加,并在一定程度上提高叶片的光化学效率,降低细胞膜相对透性和膜脂过氧化产物的含量;最适处理浓度约为500 mg/L.说明牛磺酸对小麦幼苗细胞膜有一定的保护作用.  相似文献   

9.
The contribution of the extramatrical mycelium to N and P nutrition of mycorrhizal Norway spruce ( Picea abies (L.) Karst.) was investigated. Seedlings either inoculated with Paxillus involutus (Batsch) Fr. or non-mycorrhizal were grown in a two compartment sand culture system where hyphae were separated from roots by a 45 μm nylon net. Nutrient solution of the hyphal compartment contained either 1.8 m m NH4+ and 0.18 m m H2PO4 or no N and P. Aluminium added to the hyphal compartment as a tracer of mass flow was not detected in the plant compartment, indicating that measurements of N and P transfer by the mycelium were not biased by solute movement across the nylon net.
The addition of N and P to the hyphal compartment markedly increased dry weight, N and P concentration and N and P content of mycorrhizal plants. Calculating uptake from the difference in input and output of nutrient in solution confirmed a hyphal contribution of 73% and 76% to total N and P uptake, respectively. Hyphal growth was increased at the site of nutrient solution input.  相似文献   

10.
The ability of Salix aquatica Smith, S. fragilis L. and S. viminalis L. to absorb nitrogen at varied growth rates was investigated in nutrient solutions. The effects of five nitrogen addition rates on growth rates, nitrogen contents of the plants, nitrogen concentration of the media, and dry matter distribution between roots, stems and leaves, were studied.
These clones are highly efficient in absorbing nitrogen at low concentrations in the root medium, independent of growth rate. Strong linear regressions were found between any two of the three factors: relative rate of nitrogen supply (RN), nitrogen content (plant), and relative growth rate (R). Dry matter production per unit nitrogen taken up and unit time (N-productivity) and per unit nitrogen taken up independent of time (N-efficiency) was closely correlated to the nitrogen status of the plant. Root development was favoured in the sub-optimum treatments, and leaf development in the optimum treatments. With regard to their ability to absorb nitrogen, these Salix clones appear satisfactory for efficient short rotation energy forestry.  相似文献   

11.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

12.
A combined analysis of growth and metabolite composition was performed in primary roots of Zea mays L. (Var. Alexander). The seedlings were hydroponically cultivated either in pure water or in complete nutrient solution. The overall root growth performance was similar in both treatments. Yet, digital image sequence processing methods resolved, that growth distribution and oscillatory movements within the growth zone depended strongly on external nutrient availability. Metabolite concentration profiles were similar in both treatments for most investigated metabolites, indicating a thorough mobilization of nutrient resources from the seed, but concentrations of glutamine, glutamic acid, NO3, NH4+, malate and citrate showed pronounced differences between treatments. No diurnal variations in metabolite concentrations were found. Deposition rate profiles were in general more similar to relative elemental growth rate profiles than concentration profiles and were not affected by the treatment. Major ions were deposited maximally in front of the centre of growth activity, while greatest hexose deposition was found behind that. Relative to their abundance in the root growth zone, net rates of transfer from mature tissue were highest for sucrose, glutamic acid and aspartic acid, whereas glucose, fructose and most amino acids inversely showed high net rates of transfer out of the root growth zone, indicating a high catabolic rate for those substances there. NO3, but not other nutrients, was transferred to a great extent from the root growth zone to the mature tissue in nutrient solution. Overall, the results show, that a careful analysis of growth dynamics allows quantifying and interpreting a number of important flux parameters in the growing organ and that the performance of the primary root does not depend strongly on external nutrient availability.  相似文献   

13.
Pezeshki  S.R.  Santos  M.I. 《Photosynthetica》1998,35(3):381-390
Seedlings of baldcypress (Taxodium distichum L.) grown in sealed containers containing nutrient solution were subjected to root-zone oxygen deficiency, physical restriction, and the combined stresses in a greenhouse. After six weeks of treatments (Phase I), half of the plants were harvested. The remaining half were allowed to continue (Phase II) under various treatments except plants that had restricted roots were freed thus allowing free expansion of roots into the nutrient solution. Oxygen deficiency and root physical restriction inhibited plant gas exchange parameters. Net photosynthetic rate (PN) was significantly higher in aerated unrestricted root (AUR) plants than in aerated root restricted (AR) plants and in anaerobic root unrestricted (FUR) plants than in anaerobic root restricted (FR) plants. After Phase I, FUR plants' shoot and root biomasses were 57.0 and 30.6 % lower than those of AUR plants, and AUR plants showed 3.3 and 3.8 times greater shoot and root biomasses than the AR plants, respectively. During Phase II, PN recovered rapidly in plants under aerated conditions, but not in plants under anaerobic conditions. The removal of physical root restriction under both aerated and anaerobic conditions resulted in rapid shoot and root growth in seedlings. Hence, root restriction or root-zone anaerobiosis, reductions in plant gas exchange, and biomass production in baldcypress were closely interrelated. In addition, root release from restriction was related to the regain of photosynthetic activity and biomass growth. The results support the previously proposed source-sink feed-back inhibition of photosynthesis in plants subjected to root-zone oxygen deficiency or physical restriction.  相似文献   

14.
The effects of Ni and Cd on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were investigated in a pot experiment. Seedlings were either inoculated with Laccaria bicolor (Maire) Orton or left uninoculated before being planted in pots containing a mixture of sandy soil from the B-horizon of a coniferous forest, small stones and pure quartz sand. The pots were supplied with small amounts of a balanced nutrient solution every 24 h using peristaltic pumps. Nickel or Cd were added as chlorides to the nutrient solution at levels of 85 M Ni (Ni 1), 170 M Ni (Ni 2), or 8.9 M Cd. Mycorrhizal colonisation of the roots was nearly 100% in the mycorrhizal treatments. The mycorrhizal seedlings grew significantly better than the non-mycorrhizal ones. The weight of mycorrhizal seedlings in the Ni 2 treatment was 29% lower than that of the mycorrhizal controls, but still 34% greater than that of the non-mycorrhizal seedlings not exposed to metals. There was an overall, statistically significant, negative effect of metals on plant yield. Mycorrhizal plants had lower root:shoot (R:S) ratios than non-mycorrhizal plants and the R:S ratio was increased by metal exposure, particularly in the non-mycorrhizal seedlings. Plant concentrations of Cd or Ni were not affected by mycorrhizal colonisation, but total uptake of Cd and Ni was higher in bigger mycorrhizal seedlings. Nickel decreased P concentration in all seedlings and Cd decreased P concentration in the non-mycorrhizal seedlings. Generally, the mycorrhizal seedlings grew better than non-mycorrhizal ones and had better P, K, Mg and S status. Root growth was not significantly affected by the metal treatments. The reduction in mean shoot growth of non-mycorrhizal plants, relative to the metal-free control, appeared higher than in mycorrhizal plants but was not statistically significant due to high variation in the non-mycorrhizal plants not exposed to metals. The main mycorrhizal effect was thus increased nutrient uptake and growth of the seedlings.  相似文献   

15.
Scots pine (Pinus sylvestris L.) seedlings inoculated or not (NM) by a Zn-sensitive or a Zn-tolerant isolate of the ectomycorrhizal fungus Suillus bovinus (L. Fr.) Roussel were exposed to 0.1 or 150 μM Zn2+ for 9 months. We hypothesized that inoculation with a Zn-tolerant S. bovinus isolate should result in added Zn resistance of the host plant. Plant and fungal growth as well as nutrient profiles and photosynthetic pigments in pine needles were quantified. In NM plants and in plants colonized by the Zn-sensitive isolate, plant growth, N, P, Mg and Fe assimilation were strongly inhibited under Zn stress and concurred with significantly reduced chlorophyll concentrations. In contrast, plants colonized by the Zn-tolerant isolate grew much better and remained physiologically healthier when exposed to elevated Zn. These results provide further evidence for the important role metal-adapted mycorrhizal fungi play as an effective biological barrier against metal toxicity in trees.  相似文献   

16.
Effects of elevated atmospheric carbon dioxide (CO2) levels on the production and spread of ectomycorrhizal fungal mycelium from colonised Scots pine roots were investigated. Pinus sylvestris (L.) Karst. seedlings inoculated with either Hebeloma crustuliniforme (Bull:Fr.) Quél. or Paxillus involutus (Fr.) Fr. were grown at either ambient (350 ppm) or elevated (700 ppm) levels of CO2. Mycelial production was measured after 6 weeks in pots, and mycelial spread from inoculated seedlings was studied after 4 months growth in perlite in shallow boxes containing uncolonised bait seedlings. Plant and fungal biomass were analysed, as well as carbon and nitrogen content of seedling shoots. Mycelial biomass production by H. crustuliniforme was significantly greater under elevated CO2 (up to a 3-fold increase was observed). Significantly lower concentrations and total amounts of N were found in plants exposed to elevated CO2.  相似文献   

17.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   

18.
The effects of 24-epibrassinolide (EBR) added to nutrient solution on growth of cucumber (Cucumis sativus L.) under root-zone hypoxia were investigated. Cucumber seedlings were hydroponically grown for 8 days in normoxic and hypoxic nutrient solutions with and without addition of EBR at 1 μg l−1. EBR exerted little influence on plant performance in the normoxic nutrient solution, while the chemical alleviated root-zone hypoxia-induced inhibition of root and shoot growth and net photosynthetic rate (Pn). EBR added to hypoxic nutrient solution caused an increase in the concentration of fructose, sucrose, and total soluble sugars in the roots but not in the leaves. Root-zone hypoxia enhanced the activities of lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), and pyruvate decarboxylase in the roots. Interestingly, EBR further enhanced ADH activity but lowered LDH activity in hypoxic roots. These results suggest that EBR added to hypoxic nutrient solution may stimulate the photosynthate allocation down to roots and the shift from lactate fermentation to alcohol fermentation in hypoxic roots, resulting in the increase in ATP production through glycolysis and the avoidance of cytosolic acidosis and eventually enhanced tolerance of cucumber plants to root-zone hypoxia.  相似文献   

19.
Summary The effects of aluminium concentrations between 0.2 and 30 mM at pH 3.8 ±0.2 on small plants of Norway spruce [(Picea abies (L.) Karst], Scots pine (Pinus sylvestris L.), and Scots pine infected with the ectomycorrhizal fungus Suillus bovinus (L. ex Fr.) O. Kuntze were investigated. The plants were grown at maximum relative growth rate (RG % day–1) with free access but very low external concentrations of nutrients. Steady-state conditions with respect to relative growth rate (RG) and internal nutrient concentrations were achieved before addition of aluminium, which was added as AlCl3 and/or Al(NO3)3. There were reductions in rg at aluminium concentrations of 0.3 mM in spruce, 6 mM in pine and 10 mM in ectomycorrhizal pine, i. e. at aluminium concentrations considerably higher than those normally occurring in the top layer of the mineral soil where most fine roots are found. Nutrient uptake rate per unit root growth rate was calculated for different nutrient elements. The uptake rate of calcium and magnesium was reduced at aluminium concentrations of 0.2 mM (spruce), 1 mM (pine) and 3 mM (ectomycorrhizal pine), without influencing Rg. The results question the validity of the hypothesis of aluminium toxicity to forest tree species at low external concentrations.  相似文献   

20.
Seedlings of Scots pine (Pinus sylvestris L.) of a northern provenance were cultivated in nutrient solution for 10 weeks in a climate chamber. The nutrient solution (renewed by solution exchange) contained 2.5, 10 or 50 mg N I?1. All other essential elements were added in optimal proportion to the nitrogen. Seedlings cultivated at 10 and 50 mg N I?1 were similar with respect to all characteristics studied. Seedlings cultivated at 2.5 mg N I?1 showed a lower growth rate, especially for the shoot, and an altered morphology, with high root:shoot ratios and long, slender roots. The nitrogen concentrations in shoot and needles as well as in whole seedlings were not significantly affected by the nitrogen supply, while the nitrogen concentrations in the roots were somewhat lower at 2.5 mg N I?1. Ribulose bisphosphate carboxylase (EC 4.1.1.39) activity and the concentrations of carboxylase, total and soluble protein and of chlorophyll in the needles were consistently much lower for seedlings cultivated at 2.5 mg N I?1, than for seedlings grown at higher nutrient levels. A close correlation was observed between activity and concentration of the carboxylase (r=0.95). Carboxylase activity and protein were more sensitive to a low nutrient supply than was chlorophyll. The data show how activity and concentration of ribulose bisphosphate carboxylase and the concentrations of soluble and total protein and of chlorophyll in needles of pine seedlings can be negatively affected by the nutrient supply, also when the nitrogen concentrations in the needles are close to those observed at optimal nutrient supply. It is suggested that pine seedlings store assimilated non-protein nitrogen in the needles when protein synthesis is under restraint. The nitrogen concentration in needles and seedlings could not be used as a measure of the physiological state of the seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号