首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier findings on electronitration of hen egg-white lysozyme demonstrated a product which was mononitrated at Tyr23, by ion-exchange chromatography, absorbance at 430 nm, dithionite reduction, and Edman sequencing of a nitrated proteolytic peptide. However, the whole protein was not sequenced; therefore, although the enzyme remained active upon nitration, reaction at other residues could not be completely eliminated. This study has now been extended to the redox protein myoglobin. We demonstrate the novel electronitration (electrooxidation in the presence of nitrite) of a specific tyrosine residue in horse heart myoglobin and also in apomyoglobin. Production of the yellow chromophore, 3-nitrotyrosine (3-NT), was apparent in apomyoglobin from A430 but was masked in holomyoglobin by the Soret band. In both cases, the presence of 3-NT in the electronitrated samples was further indicated by the binding of antibody to 3-NT in Western blots. High-resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry revealed a reaction product at [M + 45] (consistent with substitution of NO2 for H), indicating that the nitration reaction is the only reaction occurring which gives rise to a change in mass in the electrooxidation. Fragmentation mass spectrometry identified the nitration site as Tyr103, with no nitration at Tyr146. The procedure may be useful in preparing model nitrated proteins for the study of disease mechanisms.  相似文献   

2.
In this paper we report the successful use of a non-metallic electrode material, boron-doped diamond (BDD), for the anodic electro-oxidative modification of hen egg white lysozyme (HEWL). Platinum electrodes can give rise to loss of activity of HEWL in electrosynthetic studies, whereas activity is retained on boron-doped diamond which is proposed as an effective substitute material for this purpose. We also compare literature methods of electrode pre-treatment to determine the most effective in electrosynthesis. Our findings show a decrease in total nitroprotein yield with decreasing nitrite concentration and an increase with increasing solution pH, confirming that, at a BDD electrode, the controlling factor remains the concentration of tyrosine phenolate anion. Purification of mono- and bis-nitrated HEWL and assay of enzymic activity showed better retention of activity at BDD electrode surfaces when compared to platinum. The products from electro-oxidation of HEWL at BDD were confirmed by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FT-ICR) mass spectrometry, which revealed unique mass increases of +45 and +90?Da for the mono- and bis-nitrated lysozyme, respectively, corresponding to nitration at tyrosine residues. The nitration sites were confirmed as Tyr23 and Tyr20.  相似文献   

3.
We found that the reaction of hen egg-white lysozyme with an equimolar amount of tetranitromethane (TNM) at pH 8.0 and room temperature yielded derivatives in which the N-C bond of Gly104 is oxidatively cleaved, and a mono-nitrotyrosine lysozyme in which Tyr23 is nitrated. This bond cleavage occurred more predominantly with a decrease in the nitration of Tyr23, when the reaction was carried out under more dilute conditions. A possible mechanism in which a phenoxyl radical of Tyr 23 (an intermediate of nitration) is involved was proposed for this oxidative bond cleavage. When lysozyme was reacted with a 10 times molar excess of TNM, in addition to a mono-nitrotyrosine lysozyme in which only Try23 is nitrated, a di-nitrotyrosine lysozyme in which Tyr20 and Tyr23 are both nitrated and a tri-nitrotyrosine lysozyme in which Tyr20, Tyr23, and Tyr53 are all nitrated were obtained. However, no other possible mono- or di-nitrotyrosine lysozymes could be isolated. Thus, it is concluded that the three tyrosine residues in lysozyme are essentially nitrated sequentially with TNM in the order of Tyr23, Tyr20, and Tyr53. Since the derivatives obtained here were all active, none of the three tyrosine residues or the residues around Gly104 are considered to be very important for the lysozyme activity.  相似文献   

4.
A tryptic fragment (b5TR,NR), encompassing residues 2515–2750, was isolated from a low-iodine (0.26% by mass) bovine thyroglobulin, by limited proteolysis with trypsin and preparative, continuous-elution SDS–PAGE. The fragment was digested with Asp-N endoproteinase and analyzed by reverse-phase HPLC electrospray ionization quadrupole time-of-flight mass spectrometry, revealing the formation of: 3-monoiodotyrosine and dehydroalanine from Tyr2522; 3-monoiodotyrosine from Tyr2555 and Tyr2569; 3-monoiodotyrosine and 3,5-diiodotyrosine from Tyr2748. The data presented document, by direct mass spectrometric identifications, efficient iodophenoxyl ring transfer from monoiodinated hormonogenic donor Tyr2522 and efficient mono- and diiodination of hormonogenic acceptor Tyr2748, under conditions which permitted only limited iodination of Tyr2555 and Tyr2569, in low-iodine bovine thyroglobulin. The present study thereby provides: (1) a rationale for the preferential synthesis of T3 at the carboxy-terminal end of thyroglobulin, at low iodination level; (2) confirmation for the presence of an interspecifically conserved hormonogenic donor site in the carboxy-terminal domain of thyroglobulin; (3) solution for a previous uncertainty, concerning the precise location of such donor site in bovine thyroglobulin.  相似文献   

5.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inactivated by peroxynitrite. The sites of peroxynitrite-induced tyrosine nitration in TH have been identified by matrix-assisted laser desorption time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. V8 proteolytic fragments of nitrated TH were analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry. A peptide of 3135.4 daltons, corresponding to residues V410-E436 of TH, showed peroxynitrite-induced mass shifts of +45, +90, and +135 daltons, reflecting nitration of one, two, or three tyrosines, respectively. These modifications were not evident in untreated TH. The tyrosine residues (positions 423, 428, and 432) within this peptide were mutated to phenylalanine to confirm the site(s) of nitration and assess the effects of mutation on TH activity. Single mutants expressed wild-type levels of TH catalytic activity and were inactivated by peroxynitrite while showing reduced (30-60%) levels of nitration. The double mutants Y423F,Y428F, Y423F,Y432F, and Y428F,Y432F showed trace amounts of tyrosine nitration (7-30% of control) after exposure to peroxynitrite, and the triple mutant Y423F,Y428F,Y432F was not a substrate for nitration, yet peroxynitrite significantly reduced the activity of each. When all tyrosine mutants were probed with PEO-maleimide activated biotin, a thiol-reactive reagent that specifically labels reduced cysteine residues in proteins, it was evident that peroxynitrite resulted in cysteine oxidation. These studies identify residues Tyr(423), Tyr(428), and Tyr(432) as the sites of peroxynitrite-induced nitration in TH. No single tyrosine residue appears to be critical for TH catalytic function, and tyrosine nitration is neither necessary nor sufficient for peroxynitrite-induced inactivation. The loss of TH catalytic activity caused by peroxynitrite is associated instead with oxidation of cysteine residues.  相似文献   

6.
Cytochrome c-dependent electron transfer and apoptosome activation require protein-protein binding, which are mainly directed by conformational and specific electrostatic interactions. Cytochrome c contains four highly conserved tyrosine residues, one internal (Tyr67), one intermediate (Tyr48), and two more accessible to the solvent (Tyr74 and Tyr97). Tyrosine nitration by biologically-relevant intermediates could influence cytochrome c structure and function. Herein, we analyzed the time course and site(s) of tyrosine nitration in horse cytochrome c by fluxes of peroxynitrite. Also, a method of purifying each (nitrated) cytochrome c product by cation-exchange HPLC was developed. A flux of peroxynitrite caused the time-dependent formation of different nitrated species, all less positively charged than the native form. At low accumulated doses of peroxynitrite, the main products were two mononitrated cytochrome c species at Tyr97 and Tyr74, as shown by peptide mapping and mass spectrometry analysis. At higher doses, all tyrosine residues in cytochrome c were nitrated, including dinitrated (i.e., Tyr97 and Tyr67 or Tyr74 and Tyr67) and trinitrated (i.e., Tyr97, Tyr74, and Tyr67) forms of the protein, with Tyr67 well represented in dinitrated species and Tyr48 being the least prone to nitration. All mono-, di-, and trinitrated cytochrome c species displayed an increased peroxidase activity. Nitrated cytochrome c in Tyr74 and Tyr67, and to a lesser extent in Tyr97, was unable to restore the respiratory function of cytochrome c-depleted mitochondria. The nitration pattern of cytochrome c in the presence of tetranitromethane (TNM) was comparable to that obtained with peroxynitrite, but with an increased relative nitration yield at Tyr67. The use of purified and well-characterized mono- and dinitrated cytochrome c species allows us to study the influence of nitration of specific tyrosines in cytochrome c functions. Moreover, identification of cytochrome c nitration sites in vivo may assist in unraveling the chemical nature of proximal reactive nitrogen species.  相似文献   

7.
Samples of 5 to 20 μg of human IgG were subjected to dithiothreitol treatment to reduce disulphide bridges, followed by tryptic digestion. Glycans released from the tryptic peptide mixture by PNGase F digestion were then derivatised with 2-aminoacridone. Labelled oligosaccharides were separated by normal-phase high-performance liquid chromatography and individual components were collected for matrix-assisted laser desorption ionization time-of-flight and electrospray mass spectrometric analysis.  相似文献   

8.
A field modulation approach for high-throughput ion mobility/time-of-flight analyses of complex mixtures has been developed using a split-field drift tube. In this approach, complex mixtures of peptides, such as those that arise from tryptic digestion of protein mixtures, are separated by nanocolumn liquid chromatography, ionized by electrospray ionization, and analyzed by ion mobility/time-of-flight techniques. The split-field drift tube allows parent ions to be separated based on differences in their low-field mobilities through the first-field region before entering the second region. For increased throughput, the magnitude of the field in the second region can be modulated throughout an LC separation in order to favor transmission of different types of ions: parent ions at low fields; fragments from primarily [M+3H]3+ peptides at moderate fields; or, fragmentation of [M+3H]3+ and [M+2H]2+ species at higher fields. We demonstrate the approach with two examples: a mixture of tryptic peptides from digestion of hemoglobin; and a complex mixture of tryptic peptides from digestion of human plasma.  相似文献   

9.
Protein tyrosine nitration increases in vivo as a result of oxidative stress and is elevated in numerous inflammatory-associated diseases. Mammalian fructose-1,6-bisphosphate aldolases are tyrosine nitrated in lung epithelial cells and liver, as well as in retina under different inflammatory conditions. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we now show that aldolase A is nitrated in human skin fibroblasts. To reveal the consequences of tyrosine nitration, we studied the impact of peroxynitrite on the glycolytic functions of aldolase A. A peroxynitrite concentration-dependent decrease in fructose-1,6-bisphosphate cleavage activity was observed with a concomitant increase in nitrotyrosine immunoreactivity. Both V(max) and the K(m) for fructose-1,6-bisphosphate decreased after incubation with peroxynitrite. Aldolase nitrotyrosine immunoreactivity diminished following carboxypeptidase Y digestion, demonstrating that tyrosine residues in the carboxyl-terminal region of aldolase are major targets of nitration. Aldolase A contains a carboxyl-terminal tyrosine residue, Tyr(363), that is critical for its catalytic activity. Indeed, tandem mass spectrometric analysis of trypsin-digested aldolase showed that Tyr(363) is the most susceptible to nitration, with a modification of Tyr(342) occurring only after nitration of Tyr(363). These tyrosine nitrations likely result in altered interactions between the carboxyl-terminal region and enzyme substrate or reaction intermediates causing the decline in activity. The results suggest that tyrosine nitration of aldolase A can contribute to an impaired cellular glycolytic activity.  相似文献   

10.
Characterization of the major human milk fat globular membrane proteins was carried out using proteomic techniques comprising two-dimensional polyacrylamide gel electrophoresis, followed by in situ PNGase F and trypsin digestion. Matrix-assisted laser desorption/ionization quadrupole time-of-flight and electrospray ionization mass spectrometry identified seven major protein components: alpha-lactalbumin, lysozyme precursor, beta-casein, clusterin, lactotransferrin, polymeric immunoglobulin receptor precursor, and human milk fat globule EGF-factor 8 protein. Sequence information on the protein-associated glycans was determined by matrix-assisted laser desorption-ionization quadrupole time-of-flight hybrid mass spectrometry. This glycan analysis revealed interesting fucosylation branching patterns which may be influential in maternal protection of the newborn against bacterial and viral pathogenic attack.  相似文献   

11.
Post-translational nitration of proteins was analyzed by capillary reversed-phase high-performance liquid chromatography (RP-HPLC) on-line interfaced to electrospray ionization mass spectrometry (ESI--MS) or tandem mass spectrometry (ESI--MS/MS). Both methods were compared using a tryptic digest of bovine serum albumin (BSA) and yielded sequence coverages of 95% and 33% with RP-HPLC--ESI--MS and RP-HPLC--ESI--MS/MS, respectively. At least 95% of the tyrosines were covered by the former method, whereas the latter method only detected less than 50% of the tyrosine-containing peptides. Upon liquid-phase nitration of BSA in aqueous solution using an excess of tetranitromethane, at least 16 of the 20 tyrosine residues were found to be nitrated. After exposure of solid BSA samples to gaseous nitrogen dioxide and ozone at atmospherically relevant concentration levels, only 3 nitrated peptides were detected. By use of such a model system, RP-HPLC--ESI--MS proved to be a rapid and highly efficient method for the comprehensive and quantitative detection of protein nitration.  相似文献   

12.
13.
An N-terminal hexahistidine-tagged full-length human androgen receptor protein (His(6)-hAR) was overexpressed and purified to apparent homogeneity in the presence of dihydrotestosterone (DHT) in our previous studies. In-gel trypsin digestion of the purified DHT-bound His(6)-hAR, and tryptic peptide mapping using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS), detected a total of 17 peptides (21% coverage of hAR) with 9 peptides originating from the ligand-binding domain (LBD, 31% coverage of LBD). Amino acid sequencing analysis of the tryptic peptides from a separate in-gel digestion of the His(6)-hAR, using HPLC-coupled electrospray ionization ion trap mass spectrometry (LC/ESI-ITMS and MS/MS), unambiguously confirmed 21 peptides with 19% coverage of the hAR, of which 11 peptides originated from the LBD (35% coverage of LBD). These 21 peptides included 11 out of the 17 peptides detected by MALDI/TOF-MS. In addition, a novel serine phosphorylation site (Ser(308)) within the N-terminal transactivation domain of hAR was identified.  相似文献   

14.
Ribonucleotide reductase activity is rate-limiting for DNA synthesis, and inhibition of this enzyme supports cytostatic antitumor effects of inducible NO synthase. The small R2 subunit of class I ribonucleotide reductases contains a stable free radical tyrosine residue required for activity. This radical is destroyed by peroxynitrite, which also inactivates the protein and induces nitration of tyrosine residues. In this report, nitrated residues in the E. coli R2 protein were identified by UV-visible spectroscopy, mass spectrometry (ESI-MS), and tryptic peptide sequencing. Mass analysis allowed the detection of protein R2 as a native dimer with two iron clusters per subunit. The measured mass was 87 032 Da, compared to a calculated value of 87 028 Da. Peroxynitrite treatment preserved the non-heme iron center and the dimeric form of the protein. A mean of two nitrotyrosines per E. coli protein R2 dimer were obtained at 400 microM peroxynitrite. Only 3 out of the 16 tyrosines were nitrated, including the free radical Tyr122. Despite its radical state, that should favor nitration, the buried Tyr122 was not nitrated with a high yield, probably owing to its restricted accessibility. Dose-response curves for Tyr122 nitration and loss of the free radical were superimposed. However, protein R2 inactivation was higher than nitration of Tyr122, suggesting that nitration of the nonconserved Tyr62 and Tyr289 might be also of importance for peroxynitrite-mediated inhibition of E. coli protein R2.  相似文献   

15.
Mutay Aslan 《Amino acids》2012,42(1):65-74
To link the phenomena of inflammatory-induced increases in protein nitrotyrosine (NO2Tyr) derivatives to protein dysfunction and consequent pathological conditions, the evaluation of discrete NO2Tyr modifications on specific proteins must be undertaken. Mass spectrometric (MS) proteomics-based strategies allow for the identification of all individual proteins that are nitrated by separating tissue homogenates using 2D gel electrophoresis, detecting the nitrated proteins using an anti-NO2Tyr antibody, and then identifying the peptides generated during an in-gel proteolytic digest using matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) MS. Actin, one of the most abundant proteins in eukaryotic cells, constitutes 5% or more of cell protein and serves with other cytoskeletal proteins as a critical target for nitration-induced functional impairment. Herein, examples of actin nitration detected under physiological conditions in various models of human disease or in clinically derived tissues are given and the impact that this post-translational protein modification can have on cell and organ function is discussed.  相似文献   

16.
Nitration and inactivation of IDO by peroxynitrite   总被引:2,自引:0,他引:2  
IDO induction can deplete L-tryptophan in target cells, an effect partially responsible for the antimicrobial activities and antiallogeneic T cell responses of IFN-gamma in human macrophages, dendritic cells, and bone marrow cells. L-tryptophan depletion and NO production are both known to have an antimicrobial effect in macrophages, and the interaction of these two mechanisms is unclear. In this study we found that IDO activity was inhibited by the peroxynitrite generator, 3-(4-morpholinyl)sydnonimine, in PMA-differentiated cytokine-induced THP-1 (acute monocytic leukemia) cells and IFN-gamma-stimulated PBMCs, whereas IDO protein expression was unaffected compared with that in untreated cells. Nitrotyrosine was detected in immunoprecipitated (IP)-IDO from PMA-differentiated cytokine-induced THP-1 cells treated with 3-(4-morpholinyl)sydnonimine, but not from untreated cells. Treatment of IP-IDO and recombinant IDO (rIDO) with peroxynitrite significantly decreased enzyme activity. Nitrotyrosine was detected in both peroxynitrite-treated IP-IDO and rIDO, but not in either untreated IP-IDO or rIDO. Peptide analysis by liquid chromatography/electrospray ionization and tandem mass spectrometry demonstrated that Tyr15, Tyr345, and Tyr353 in rIDO were nitrated by peroxynitrite. The levels of Tyr nitration and the inhibitory effect of peroxynitrite on IDO activity were significantly reduced in the Tyr15-to-Phe mutant. These results indicate that IDO is nitrated and inactivated by peroxynitrite and that nitration of Tyr15 in IDO protein is the most important factor in the inactivation of IDO.  相似文献   

17.
Myeloperoxidase is released from stimulated polymorphonuclear leukocytes at inflammatory loci. Besides its bactericidal activity, it interacts with human serum albumin that is essential for the endothelial uptake of myeloperoxidase and its contribution in regulation of the blood vessel tonus. Here, we investigated which kinds of modification dominate in the albumin protein by the myeloperoxidase-hydrogen peroxide system at physiological pH. In the presence of chloride, bromide, and nitrite, the myeloperoxidase-hydrogen peroxide system caused an oxidation, bromination, and nitrosylation/nitration of eight amino acid residues of albumin as detected by fragment analysis of tryptic digests with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. An oxygen was incorporated into the methionines Met147, Met353, and Met572 as well as into the tryptophan Trp238. In the case of methionine residues, this oxygen was derived from the water phase as shown using 18O-enriched water. Nitrosylation/nitration was observed at the tryptophan Trp238 and the tyrosines Tyr162, Tyr425, and Tyr476 according to the mass shift of 29 Da and 45 Da. The incorporation of one or two bromines was found into the tyrosines Tyr425 and Tyr476. We did not observe any chlorination of albumin fragments. Thus, myeloperoxidase modifies in multiple ways amino acid residues in human serum albumin.  相似文献   

18.
The (Fe2S2)2+ complex of an artificial 20-peptide ligand, Ac-Pro-Tyr-Ser-Cys-Arg-Ala-Gly-Ala-Cys-Ser-Thr-Cys-Ala-Gly-Pro-Leu-Leu-T hr-Cys- Val-NH2, containing an invariant Cys-A-B-C-D-Cys-X-Y-Cys (A, B, C, D, X, Y = amino acid residues) fragment of plant-type ferredoxins was synthesized by a ligand exchange method with [Fe2S2(S-t-Bu)4]2-. 1H-nmr spectroscopic and electrochemical data of the complex indicate the presence of two coordination isomers. One of them having a Cys-X-Y-Cys bridging coordination to the two Fe(III) ions, has the (Fe2S2)2+ core environment similar to those of the denatured plant-type ferredoxins and exhibits a positive shifted redox potential at -0.64 V vs saturated colonel electrode (SCE) in N,N-dimethylformamide (DMF). Another isomer with the Cys-A-B-C-D-Cys bridging coordination shows a negative redox potential at -0.96 V vs SCE in DMF.  相似文献   

19.
J Sekiguchi  S Shuman 《The EMBO journal》1996,15(13):3448-3457
Vaccinia DNA topoisomerase, a eukaryotic type I enzyme, binds and cleaves duplex DNA at sites containing the sequence 5''-(T/C)CCTT. We report the identification of Tyr70 as the site of contact between the enzyme and the +4C base of its target site. This was accomplished by UV-crosslinking topoisomerase to bromocytosine-substituted DNA, followed by isolation and sequencing of peptide-DNA photoadducts. A model for the topoisomerase-DNA interface is proposed, based on the crystal structure of a 9 kDa N-terminal tryptic fragment. The protein domain fits into the DNA major groove such that Tyr70 is positioned close to the +4C base and Tyr72 is situated near the +3C base. Mutational analysis indicates that Tyr70 and Tyr72 contribute to site recognition during covalent catalysis. We propose, based on this and other studies of the vaccinia protein, that DNA backbone recognition and reaction chemistry are performed by a relatively well-conserved 20 kDa C-terminal portion of the vaccinia enzyme, whereas discrimination of the DNA sequence at the cleavage site is accomplished by a separate N-terminal domain, which is less conserved between viral and cellular proteins. Division of function among distinct structural modules may explain the different site specificities of the eukaryotic type I topoisomerases.  相似文献   

20.
Our previous investigation indicated that insulin can be nitrated by peroxynitrite in vitro. In this study, the preferential nitration site of the four tyrosine residues in insulin molecule was confirmed. Mononitrated and dinitrated insulins were purified by RP-HPLC. Following reduction of insulin disulfide bridges, Native-PAGE indicated that A-chain was preferentially nitrated. Combination of enzymatic digestion of mononitrated insulin with endoproteinase Glu-C, mass spectrometry confirmed that Tyr-A14 was the preferential nitration site when insulin was treated with peroxynitrite. Tyr-A19, maybe, was the next preferential nitration site. According to the crystal structure, Tyr-B26 between the two tyrosine residues in insulin B-chain was likely easier to be nitrated by peroxynitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号