首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
2.
The distinct levels of Rac activity differentially regulate the pattern of intrinsic cell migration. However, it remains unknown how Rac activity is modulated and how the level of Rac activity controls cell migratory behavior. Here we show that Slit-Robo GAP 1 (srGAP1) is a modulator of Rac activity in locomotive cells. srGAP1 possesses a GAP activity specific to Rac1 and is recruited to lamellipodia in a Rac1-dependent manner. srGAP1 limits Rac1 activity and allows concomitant activation of Rac1 and RhoA, which are mutually inhibitory. When both GTPases are activated, the protrusive structures caused by Rac1-dependent actin reorganization are spatially restricted and periodically destabilized, causing ruffling by RhoA-induced actomyosin contractility. Depletion of srGAP1 overactivates Rac1 and inactivates RhoA, resulting in continuous spatiotemporal spreading of lamellipodia and a modal shift of intrinsic cell motility from random to directionally persistent. Thus srGAP1 is a key determinant of lamellipodial dynamics and cell migratory behavior.  相似文献   

3.
cAMP is one of the most potent signaling molecules to stabilize the endothelial barrier, both under resting conditions as well as under challenge of barrier-destabilizing mediators. The two main signaling axes downstream of cAMP are activation of protein kinase A (PKA) as well as engagement of exchange protein directly activated by cAMP (Epac) and its effector GTPase Rap1. Interestingly, both pathways activate GTP exchange factors for Rac1, such as Tiam1 and Vav2 and stabilize the endothelial barrier via Rac1-mediated enforcement of adherens junctions and strengthening of the cortical actin cytoskeleton. On the level of Rac1, cAMP signaling converges with other barrier-enhancing signaling cues induced by sphingosine-1-phosphate (S1P) and angiopoietin-1 (Ang1) rendering Rac1 as an important signaling hub. Moreover, activation of Rap1 and inhibition of RhoA also contribute to barrier stabilization, emphasizing that regulation of small GTPases is a central mechanism in this context. The relevance of cAMP/Rac1-mediated barrier protection under pathophysiologic conditions can be concluded from data showing that inflammatory mediators causing multi-organ failure in systemic inflammation or sepsis interfere with this signaling axis on the level of cAMP or Rac1. This is in line with the well-known efficacy of cAMP to abrogate the barrier breakdown in response to most barrier-compromising stimuli. New is the notion that the tight endothelial barrier under resting conditions is maintained by (1) continuous cAMP formation induced by hormones such as epinephrine or (2) by activation of Rac1 downstream of S1P that is secreted by erythrocytes and activated platelets.  相似文献   

4.
5.
To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated that the polarized protrusion and retraction of the plasma membrane became deficient upon KAI1/CD82 expression. The deficiency in developing these motility-related cellular events was caused by poor formations of actin cortical network and stress fiber and by aberrant dynamics in actin organization. Rac1 activity was reduced by KAI1/CD82, consistent with the diminution of lamellipodia and actin cortical network; while the growth factor-stimulated RhoA activity was blocked by KAI1/CD82, consistent with the loss of stress fiber and attenuation in cellular retraction. Upon KAI1/CD82 expression, Rac effector cofilin was not enriched at the cell periphery to facilitate lamellipodia formation while Rho kinase exhibited a significantly lower activity leading to less retraction. Phosphatidylinositol 4, 5-biphosphate, which initiates actin polymerization from the plasma membrane, became less detectable at the cell periphery in KAI1/CD82-expressing cells. Moreover, KAI1/CD82-induced phenotypes likely resulted from the suppression of multiple signaling pathways such as integrin and growth factor signaling. In summary, at the cellular level KAI1/CD82 inhibited polarized protrusion and retraction events by disrupting actin reorganization; at the molecular level, KAI1/CD82 deregulated Rac1, RhoA, and their effectors cofilin and Rho kinase by perturbing the plasma membrane lipids.  相似文献   

6.
Membrane ruffle formation requires remodeling of cortical actin filaments, a process dependent upon the small G-protein Rac. Growth factors stimulate actin remodeling and membrane ruffling by integration of signaling pathways that regulate actin-binding proteins. Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of many actin-binding proteins and is produced by the type I phosphatidylinositol phosphate kinases (PIPKIs). Here we show in MG-63 cells that only the PIPKIalpha isoform is localized to platelet-derived growth factor (PDGF)-induced membrane ruffles. Further, expression of kinase dead PIPKIalpha, which acts as a dominant negative mutant, blocked membrane ruffling, suggesting that PIPKIalpha and PIP2 participate in ruffling. To explore this, PIPKIalpha was overexpressed in serum-starved cells and stimulated with PDGF. In serum-starved cells, PIPKIalpha expression did not stimulate actin remodeling, but when these cells were stimulated with PDGF, actin rapidly reorganized into foci but not membrane ruffles. PIPKIalpha-mediated formation of actin foci was independent of both Rac1 and phosphatidylinositol 3-kinase activities. Significantly, coexpression of dominant active Rac1 with PIPKIalpha in PDGF-stimulated cells resulted in membrane ruffling. The PDGF- and Rac1-stimulated ruffling was inhibited by expression of kinase-dead PIPKIalpha. Combined, these data support a model where the localized production of PIP2 by PIPKIalpha is necessary for actin remodeling, whereas formation of membrane ruffles required Rac signaling.  相似文献   

7.
In this paper, we describe the characterization of DEF6, a novel PH-DH-like protein related to SWAP-70 that functions as an upstream activator of Rho GTPases. In NIH 3T3 cells, stimulation of the PI 3-kinase signaling pathway with either H2O2 or platelet-derived growth factor (PDGF) resulted in the translocation of an overexpressed DEF6-GFP fusion protein to the cell membrane and induced the formation of filopodia and lamellipodia. In contrast to full-length DEF6, expression of the DH-like (DHL) domain as a GFP fusion protein potently induced actin polymerization, including stress fiber formation in COS-7 cells, in the absence of PI 3-kinase signaling, indicating that it was constitutively active. The GTP-loading of Cdc42 was strongly enhanced in NIH 3T3 cells expressing the DH domain while filopodia formation, membrane ruffling, and stress fiber formation could be inhibited by the co-expression of the DH domain with dominant negative mutants of either N17Rac1, N17Cdc42, or N19RhoA, respectively. This indicated that DEF6 acts upstream of the Rho GTPases resulting in the activation of the Cdc42, Rac1, and RhoA signaling pathways. In vitro, DEF6 specifically interacted with Rac1, Rac2, Cdc42, and RhoA, suggesting a direct role for DEF6 in the activation of Rho GTPases. The ability of DEF6 to both stimulate actin polymerization and bind to filamentous actin suggests a role for DEF6 in regulating cell shape, polarity, and movement.  相似文献   

8.
Bordetella that infect mammals produce a multifunctional repeat in toxin (RTX) adenylate cyclase toxin known as CyaA, an excellent example of bacterial sophistication in subverting host defense. Recent reports show that interaction of CyaA with tracheal epithelial cells aids adhesion of Bordetella to ciliated mucosa and induces production of the pro-inflammatory cytokine interleukin, IL-6. Myeloid phagocytes, attracted to the site of infection are the target of freshly secreted CyaA that binds to the alpha(M)beta2 integrin (CD11b/CD18), penetrates cells and promptly suppresses their bactericidal functions by converting cellular ATP to cAMP. Such uncontrolled cAMP signaling can also drive CD11b-expressing immature dendritic cells into a semi-mature state, possibly hijacking them to shape the local adaptive immune response towards tolerance of the pathogen.  相似文献   

9.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively.  相似文献   

10.
Members of the Rho family of small GTPases, such as Rho and Rac, are required for actin cytoskeletal reorganization during the migration of carcinoma cells. Phosphodiesterases are necessary for this migration because they alleviate cAMP-dependent protein kinase (PKA)-mediated inhibition of RhoA (O'Connor, K. L., Shaw, L. M., and Mercurio, A. M. (1998) J. Cell Biol. 143, 1749-1760; O'Connor K. L., Nguyen, B.-K., and Mercurio, A. M. (2000), J. Cell Biol. 148, 253-258). In this study, we report that the migration of breast and squamous carcinoma cells toward either lysophosphatidic acid or epidermal growth factor involves not only phosphodiesterase activity but also cooperative signaling from PKA. Furthermore, we demonstrate that Rac1 activation in response to chemoattractant or beta(1) integrin clustering is regulated by PKA and that Rac1 is required for this migration. Also, we find that beta(1) integrin signaling stimulates the rapid and transient activation of PKA. A novel implication of these findings is that carcinoma cell migration is controlled by cAMP-dependent as well as cAMP inhibitory signaling mechanisms.  相似文献   

11.
RhoA activity is transiently inhibited at the initial phase of integrin engagement, when Cdc42- and/or Rac1-mediated membrane spreading and ruffling predominantly occur. Paxillin, an integrin-assembly protein, has four major tyrosine phosphorylation sites, and the phosphorylation of Tyr31 and Tyr118 correlates with cell adhesion and migration. We found that mutation of Tyr31/118 caused enhanced activation of RhoA and premature formation of stress fibers with substantial loss of efficient membrane spreading and ruffling in adhesion and migration of NMuMG cells. These phenotypes were similar to those induced by RhoA(G14V) in parental cells, and could be abolished by expression of RhoA(T19N), Rac1(G12V), or p190RhoGAP in the mutant-expressing cells. Phosphorylated Tyr31/118 was found to bind to two src homology (SH)2 domains of p120RasGAP, with coprecipitation of endogenous paxillin with p120RasGAP. p190RhoGAP is known to be a major intracellular binding partner for the p120RasGAP SH2 domains. We found that Tyr31/118-phosphorylated paxillin competes with p190RhoGAP for binding to p120RasGAP, and provides evidence that p190RhoGAP freed from p120RasGAP efficiently suppresses RhoA activity during cell adhesion. We conclude that Tyr31/118-phosphorylated paxillin serves as a template for the localized suppression of RhoA activity and is necessary for efficient membrane spreading and ruffling in adhesion and migration of NMuMG cells.  相似文献   

12.
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis.  相似文献   

13.
Hypoxia/reoxygenation-induced changes in endothelial permeability are accompanied by endothelial actin cytoskeletal and adherens junction remodeling, but the mechanisms involved are uncertain. We therefore measured the activities of the Rho GTPases Rac1, RhoA, and Cdc42 during hypoxia/reoxygenation and correlated them with changes in endothelial permeability, remodeling of the actin cytoskeleton and adherens junctions, and production of ROS. Dominant negative forms of Rho GTPases were introduced into cells by adenoviral gene transfer and transfection, and inhibitors of NADPH oxidase, PI3 kinase, and Rho kinase were used to characterize the signaling pathways involved. In some experiments constitutively activated forms of RhoA and Rac1 were also used. We show for the first time that hypoxia/reoxygenation-induced changes in endothelial permeability result from coordinated actions of the Rho GTPases Rac1 and RhoA. Rac1 and RhoA rapidly respond to changes in oxygen tension, and their activity depends on NADPH oxidase- and PI3 kinase-dependent production of ROS. Rac1 acts upstream of RhoA, and its transient inhibition by acute hypoxia leads to activation of RhoA followed by stress fiber formation, dispersion of adherens junctions, and increased endothelial permeability. Reoxygenation strongly activates Rac1 and restores cortical localization of F-actin and VE-cadherin. This effect is a result of Rac1-mediated inhibition of RhoA and can be prevented by activators of RhoA, L63RhoA, and lysophosphatidic acid. Cdc42 activation follows the RhoA pattern of activation but has no effect on actin remodeling, junctional integrity, or endothelial permeability. Our results show that Rho GTPases act as mediators coupling cellular redox state to endothelial function.  相似文献   

14.
The Rho family small GTPases play a crucial role in mediating cellular responses to stretch. However, it remains unclear how force is transduced to Rho signaling pathways. We investigated the effect of stretch on the activation and caveolar localization of RhoA and Rac1 in neonatal rat cardiomyocytes. In unstretched cardiomyocytes, RhoA and Rac1 were detected in both caveolar and non-caveolar fractions as assessed using detergent-free floatation analysis. Stretching myocytes for 4 min activated RhoA and Rac1. By 15 min of stretch, RhoA and Rac1 had dissociated from caveolae, and there was decreased coprecipitation of RhoA and Rac1 with caveolin-3. To determine whether compartmentation of RhoA and Rac1 within caveolae was necessary for stretch signaling, we disrupted caveolae with methyl beta-cyclodextrin (MbetaCD). Treatment with 5 mm MbetaCD for 1 h dissociated both RhoA and Rac1 from caveolae. Under this condition, stretch failed to activate RhoA or Rac1. Stretch-induced actin cytoskeletal organization was concomitantly impaired. Interestingly the ability of stretch to activate extracellular signal-regulated kinase (ERK) was unaffected by MbetaCD treatment, but ERK translocation to the nucleus was impaired. Stretch-induced hypertrophy was also inhibited. Actin cytoskeletal disruption with cytochalasin-D also prevented stretch from increasing nuclear ERK, whereas actin polymerization with jasplakinolide restored nuclear translocation of activated ERK in the presence of MbetaCD. We suggest that activation of RhoA or Rac1, localized in a caveolar compartment, is essential for sensing externally applied force and transducing this signal to the actin cytoskeleton and ERK translocation.  相似文献   

15.
Clone A colon carcinoma cells develop fan-shaped lamellae and exhibit random migration when plated on laminin, processes that depend on the ligation of the alpha6beta4 integrin. Here, we report that expression of a dominant negative RhoA (N19RhoA) in clone A cells inhibited alpha6beta4-dependent membrane ruffling, lamellae formation, and migration. In contrast, expression of a dominant negative Rac (N17Rac1) had no effect on these processes. Using the Rhotekin binding assay to assess RhoA activation, we observed that engagement of alpha6beta4 by either antibody-mediated clustering or laminin attachment resulted in a two- to threefold increase in RhoA activation, compared with cells maintained in suspension or plated on collagen. Antibody-mediated clustering of beta1 integrins, however, actually suppressed Rho A activation. The alpha6beta4-mediated interaction of clone A cells with laminin promoted the translocation of RhoA from the cytosol to membrane ruffles at the edges of lamellae and promoted its colocalization with beta1 integrins, as assessed by immunofluorescence microscopy. In addition, RhoA translocation was blocked by inhibiting phosphodiesterase activity and enhanced by inhibiting the activity of cAMP-dependent protein kinase. Together, these results establish a specific integrin-mediated pathway of RhoA activation that is regulated by cAMP and that functions in lamellae formation and migration.  相似文献   

16.
Activin B belongs to the TGFβ family of growth factors and is upregulated in clear cell renal cell carcinoma cells by hypoxia inducible factors. Expression of Activin B is required for tumor growth in vivo and tumor cell invasion in vitro. Here we show that activation of RhoA signaling counteracts Activin B mediated disassembly of actin stress fibers, mesenchymal cell morphology and invasiveness, whereas inhibition of RhoA rescues these effects in Activin B knockdown cells. Conversely, Activin B inhibits RhoA signaling suggesting that there is an antagonistic connection between both pathways. In addition we found that Rac1 plays an opposite role to RhoA, i.e. activation of Rac1 initiates loss of actin stress fibers, promotes a mesenchymal cell morphology and induces invasion in Activin B knockown cells, whereas inhibition of Rac1 abolishes these Activin B effects. Collectively, our data provide evidence that reduction of RhoA signaling by Activin B together with persistent Rac1 activity is a prerequisite for inducing an invasive phenotype in clear cell renal cell carcinoma.  相似文献   

17.
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) targets phagocytes expressing the alpha(M)beta2 integrin (CD11b/CD18), permeabilizes their membranes by forming small cation-selective pores, and delivers into cells a calmodulin-activated adenylate cyclase (AC) enzyme that dissipates cytosolic ATP into cAMP. We describe here a third activity of CyaA that yields elevation of cytosolic calcium concentration ([Ca2+]i) in target cells. The CyaA-mediated [Ca2+]i increase in CD11b+ J774A.1 monocytes was inhibited by extracellular La3+ ions but not by nifedipine, SK&F 96365, flunarizine, 2-aminoethyl diphenylborinate, or thapsigargin, suggesting that influx of Ca2+ into cells was not because of receptor signaling or opening of conventional calcium channels by cAMP. Compared with intact CyaA, a CyaA-AC- toxoid unable to generate cAMP promoted a faster, albeit transient, elevation of [Ca2+]i. This was not because of cell permeabilization by the CyaA hemolysin pores, because a mutant exhibiting a strongly enhanced pore-forming activity (CyaA-E509K/E516K), but unable to deliver the AC domain into cells, was also unable to elicit a [Ca2+]i increase. Further mutations interfering with AC translocation into cells, such as proline substitutions of glutamate residues 509 or 570 or deletion of the AC domain as such, reduced or ablated the [Ca2+]i-elevating capacity of CyaA. Moreover, structural alterations within the AC domain, because of insertion of various oligopeptides, differently modulated the kinetics and extent of Ca2+ influx elicited by the respective AC- toxoids. Hence, the translocating AC polypeptide itself appears to participate in formation of a novel type of membrane path for calcium ions, contributing to action of CyaA in an unexpected manner.  相似文献   

18.
Rho-associated coiled-coil containing protein kinase 1 (ROCK1) is a key downstream effector of the small GTPase RhoA. Targeting ROCK1 has shown promising clinical potential in cancer, cardioprotection, hypertension, diabetes, neuronal regeneration, and stem cell biology. General working hypothesis in previous studies has centered on the function of ROCK1 as a downstream sequence in the RhoA signaling pathway. In this study, the effects of the direct inhibition of ROCK1 on the activity of upstream RhoA and Rac1 were examined using a combined pharmacological and genetic approach. We report an intriguing mechanism by which the inhibition of ROCK1 indirectly diminishes the activity of upstream RhoA through the stimulation of Tiam1-induced Rac1 activity. This novel feedback mechanism, in which ROCK1 mediates upstream Rac1 and RhoA activity, offers considerable insight into the diverse effects of ROCK1 on the functional balance of the Rho family of small GTPases, which regulates actin cytoskeleton reorganization processes and the resulting overall behavior of cells.  相似文献   

19.
Repair of the airway epithelium after injury is critical for restoring normal lung. The reepithelialization process involves spreading and migration followed later by cell proliferation. Rho-GTPases are key components of the wound healing process in many different types of tissues, but the specific roles for RhoA and Rac1 vary and have not been identified in lung epithelial cells. We investigated whether RhoA and Rac1 regulate wound closure of bronchial epithelial cells. RhoA and Rac1 proteins were efficiently expressed in a cell line of human bronchial epithelial cells (16HBE) by adenovirus-based gene transfer. We found that both constitutively active RhoA and dominant negative RhoA inhibited wound healing, suggesting that both activation and inhibition of RhoA interfere with normal wound healing. Overexpression of wild-type Rac1 induced upregulation of RhoA, disrupted intercellular junctions, and inhibited wound closure. Dominant negative Rac1 also inhibited wound closure. Inhibition of the downstream effector of RhoA, Rho-kinase, with Y-27632 suppressed actin stress fibers and focal adhesion formation, increased Rac1 activity, and stimulated wound closure. The activity of both RhoA and Rac1 are influenced by the polymerization state of microtubules, and cell migration involves coordinated action of actin and microtubules. Microtubule depolymerization upon nocodazole treatment led to an increase in focal adhesions and decreased wound closure. We conclude that coordination of both RhoA and Rac1 activity contributes to bronchial epithelial wound repair mechanisms in vitro, that inhibition of Rho-kinase accelerates wound closure, and that efficient repair involves intact microtubules.  相似文献   

20.
We observed evolutionary conservation of canonical nuclear localization signal sequences (K(K/R)X(K/R)) in the C-terminal polybasic regions (PBRs) of some Rac and Rho isoforms. Canonical D-box sequences (RXXL), which target proteins for proteasome-mediated degradation, are also evolutionarily conserved near the PBRs of these small GTPases. We show that the Rac1 PBR (PVKKRKRK) promotes Rac1 nuclear accumulation, whereas the RhoA PBR (RRGKKKSG) keeps RhoA in the cytoplasm. A mutant Rac1 protein named Rac1 (pbrRhoA), in which the RhoA PBR replaces the Rac1 PBR, has greater cytoplasmic localization, enhanced resistance to proteasome-mediated degradation, and higher protein levels than Rac1. Mutating the D-box by substituting alanines at amino acids 174 and 177 significantly increases the protein levels of Rac1 but not Rac1(pbrRhoA). These results suggest that Rac1 (pbrRhoA) is more resistant than Rac1 to proteasome-mediated degradative pathways involving the D-box. The cytoplasmic localization of Rac1(pbrRhoA) provides the most obvious reason for its resistance to proteasome-mediated degradation, because we show that Rac1(pbrRhoA) does not greatly differ from Rac1 in its ability to stimulate membrane ruffling or to interact with SmgGDS and IQGAP1-calmodulin complexes. These findings support the model that nuclear localization signal sequences in the PBR direct Rac1 to the nucleus, where Rac1 participates in signaling pathways that ultimately target it for degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号