首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
CD11b+Gr1+ myeloid derived suppressor cells (MDSC) are known to be very potent suppressors of T cell immunity and can be further stratified into granulocytic MDSC and monocytic MDSC in mice based on expression of Ly6G or Ly6C, respectively. Here, using these markers and functional assays, we aimed to identify whether MDSC are induced during chronic inflammation leading to fibrosis in both kidney and liver and whether additional markers could more specifically identify these MDSC subsets. In an adenine-induced model of kidney inflammation/fibrosis suppressive Ly6Gpos MDSC were induced. The suppressive function within the Ly6G+ MDSC population was exclusively present in IFNγRβ expressing cells. In contrast, in chronic inflammation in the liver induced by bile duct ligation, suppressive capacity was exclusively present in the Ly6Cpos MDSC subset. Gene expression analyses confirmed the differential origins and regulation of those MDSC subsets. Additionally, depletion of MDSC in either kidney or liver fibrosis enhanced fibrosis markers, indicating a protective role for MDSC in organ fibrosis. Thus, our data demonstrate that during liver inflammation and kidney fibrosis MDSC with similar function arise bearing a distinct marker profile and arising from different cell populations.  相似文献   

2.
Myeloid-derived suppressor cells (MDSCs) have been characterized in several disease settings, especially in many tumor systems. Compared to their involvement in tumor microenvironments, however, MDSCs have been less well studied in their responses to infectious disease processes, in particular to retroviruses that induce immunodeficiency. Here, we demonstrate for the first time the development of a highly immunosuppressive MDSC population that is dependent on infection by the LP-BM5 retrovirus, which causes murine acquired immunodeficiency. These MDSCs express a cell surface marker signature (CD11b+ Gr-1+ Ly6C+) characteristic of monocyte-type MDSCs. Such MDSCs profoundly inhibit immune responsiveness by a cell dose- and substantially inducible nitric oxide synthase (iNOS)-dependent mechanism that is independent of arginase activity, PD-1–PD-L1 expression, and interleukin 10 (IL-10) production. These MDSCs display levels of immunosuppressive function in parallel with the extent of disease in LP-BM5-infected wild-type (w.t.) versus knockout mouse strains that are differentially susceptible to pathogenesis. These MDSCs suppressed not only T-cell but also B-cell responses, which are an understudied target for MDSC inhibition. The MDSC immunosuppression of B-cell responses was confirmed by the use of purified B responder cells, multiple B-cell stimuli, and independent assays measuring B-cell expansion. Retroviral load measurements indicated that the suppressive Ly6Glow/± Ly6C+ CD11b+-enriched MDSC subset was positive for LP-BM5, albeit at a significantly lower level than that of nonfractionated splenocytes from LP-BM5-infected mice. These results, including the strong direct MDSC inhibition of B-cell responsiveness, are novel for murine retrovirus-induced immunosuppression and, as this broadly suppressive function mirrors that of the LP-BM5-induced disease syndrome, support a possible pathogenic effector role for these retrovirus-induced MDSCs.  相似文献   

3.
Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.  相似文献   

4.
The immune tolerance to rat kidney allografts induced by a perioperative treatment with anti-CD28 Abs is associated with a severe unresponsiveness of peripheral blood cells to donor Ags. In this model, we identified an accumulation in the blood of CD3(-)class II(-)CD11b(+)CD80/86(+) plastic-adherent cells that additionally expressed CD172a as well as other myeloid markers. These cells were able to inhibit proliferation, but not activation, of effector T cells and to induce apoptosis in a contact-dependent manner. Their suppressive action was found to be under the control of inducible NO synthase, an enzyme also up-regulated in tolerated allografts. Based on these features, these cells can be defined as myeloid-derived suppressor cells (MDSC). Interestingly, CD4(+)CD25(high)FoxP3(+) regulatory T cells were insensitive in vitro to MDSC-mediated suppression. Although the adoptive transfer of MDSC failed to induce kidney allograft tolerance in recently transplanted recipients, the maintenance of tolerance after administration of anti-CD28 Abs was found to be dependent on the action of inducible NO synthase. These results suggest that increased numbers of MDSC can inhibit alloreactive T cell proliferation in vivo and that these cells may participate in the NO-dependent maintenance phase of tolerance.  相似文献   

5.
Myeloid cells play a crucial role in tumor progression. The most common tumor-infiltrating myeloid cells are myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAMs). These cells promote tumor growth by their inherent immune suppressive activity which is enhanced by their cross-talk. The root extract of the plant Withania somnifera (Ashwagandha) (WRE) has been reported to reduce tumor growth. HPLC analysis identified Withaferin A (WA) as the most abundant constituent of WRE and led us to determine whether the anti-tumor effects of WRE and WA involve modulating MDSC and TAM activity. A prominent effect of MDSC is their production of IL-10 which increases upon cross-talk with macrophages, thus polarizing immunity to a pro-tumor type 2 phenotype. In vitro treatment with WA decreased MDSC production of IL-10 and prevented additional MDSC production of IL-10 generated by MDSC–macrophage cross-talk. Macrophage secretion of IL-6 and TNFα, cytokines that increase MDSC accumulation and function, was also reduced by in vitro treatment with WA. Much of the T-cell suppressive activity of MDSC is due to MDSC production of reactive oxygen species (ROS), and WA significantly reduced MDSC production of ROS through a STAT3-dependent mechanism. In vivo treatment of tumor-bearing mice with WA decreased tumor weight, reduced the quantity of granulocytic MDSC, and reduced the ability of MDSC to suppress antigen-driven activation of CD4+ and CD8+ T cells. Thus, adjunctive treatment with WA reduced myeloid cell-mediated immune suppression, polarized immunity toward a tumor-rejecting type 1 phenotype, and may facilitate the development of anti-tumor immunity.  相似文献   

6.
Waight JD  Hu Q  Miller A  Liu S  Abrams SI 《PloS one》2011,6(11):e27690
Myeloid-derived suppressor cells (MDSC) are induced under diverse pathologic conditions, including neoplasia, and suppress innate and adaptive immunity. While the mechanisms by which MDSC mediate immunosuppression are well-characterized, details on how they develop remain less understood. This is complicated further by the fact that MDSC comprise multiple myeloid cell types, namely monocytes and granulocytes, reflecting diverse stages of differentiation and the proportion of these subpopulations vary among different neoplastic models. Thus, it is thought that the type and quantities of inflammatory mediators generated during neoplasia dictate the composition of the resultant MDSC response. Although much interest has been devoted to monocytic MDSC biology, a fundamental gap remains in our understanding of the derivation of granulocytic MDSC. In settings of heightened granulocytic MDSC responses, we hypothesized that inappropriate production of G-CSF is a key initiator of granulocytic MDSC accumulation. We observed abundant amounts of G-CSF in vivo, which correlated with robust granulocytic MDSC responses in multiple tumor models. Using G-CSF loss- and gain-of-function approaches, we demonstrated for the first time that: 1) abrogating G-CSF production significantly diminished granulocytic MDSC accumulation and tumor growth; 2) ectopically over-expressing G-CSF in G-CSF-negative tumors significantly augmented granulocytic MDSC accumulation and tumor growth; and 3) treatment of naïve healthy mice with recombinant G-CSF protein elicited granulocytic-like MDSC remarkably similar to those induced under tumor-bearing conditions. Collectively, we demonstrated that tumor-derived G-CSF enhances tumor growth through granulocytic MDSC-dependent mechanisms. These findings provide us with novel insights into MDSC subset development and potentially new biomarkers or targets for cancer therapy.  相似文献   

7.
Immunostimulatory CpG oligonucleotides (ODN) activate cells that express TLR9 and have been shown to improve the host's response to tumor Ags. Unfortunately, the immunosuppressive microenvironment that surrounds many cancers inhibits Ag-specific cellular responses and thus interferes with CpG-mediated immunotherapy. Myeloid-derived suppressor cells (MDSC) represent an important constituent of this immunosuppressive milieu. Large numbers of MDSC are present in and near tumor sites where they inhibit the activity of Ag-specific T and NK cells. Current studies indicate that the delivery of CpG ODN directly into the tumor bed reduces the immunosuppressive activity of monocytic (CD11b(+), Ly6G(-), Ly6C(high)) MDSC. Monocytic MDSC express TLR9 and respond to CpG stimulation by 1) losing their ability to suppress T cell function, 2) producing Th1 cytokines, and 3) differentiating into macrophages with tumoricidal capability. These findings provide insight into a novel mechanism by which CpG ODN contribute to tumor regression, and they support intratumoral injection as the optimal route for their delivery.  相似文献   

8.
As more groups investigate the role of myeloid-derived suppressor cells (MDSCs) in promoting the growth of primary tumors and distant tumor metastases, it is imperative to ensure the accurate detection and quantification of MDSC immunosuppression ex vivo. MDSCs are defined by their ability to suppress immune responses. Although different in vitro culture conditions have been used to study MDSCs, the effect of different culture conditions on MDSC immunosuppression is unknown. We therefore isolated MDSCs from the lungs and spleens of 4T1 murine mammary tumor-bearing mice and assayed MDSC-mediated suppression of T cell responses under different culture conditions. We found that 4T1-induced MDSCs effectively suppressed T cell proliferation under serum-free conditions, but not when fetal calf serum (FCS) was present. FCS neither altered the immunosuppressive activities of other myeloid cell types (i.e., peritoneal or tumor-associated macrophages) nor modified the susceptibility of T cells to myeloid cell-mediated suppression, but instead acted directly on 4T1-induced MDSCs to significantly reduce their immunosuppressive function. Importantly, we found that bovine serum albumin was a major contributor to the antagonistic effects of FCS on 4T1-induced MDSC immunosuppression by inhibiting reactive oxygen species production from MDSCs. This work reveals that in vitro culture conditions influence the immunosuppressive properties of MDSCs and highlights the importance of testing different culture conditions on MDSC phenotype to ensure that MDSC immunosuppression is not being masked. These data have important implications for the accurate detection and identification of MDSCs, as well as for determining the influence of MDSC-mediated immunosuppression on primary and metastatic tumor growth.  相似文献   

9.
Inducible NO synthase (iNOS) is a hallmark of chronic inflammation that is also overexpressed in melanoma and other cancers. Whereas iNOS is a known effector of myeloid-derived suppressor cell (MDSC)-mediated immunosuppression, its pivotal position at the interface of inflammation and cancer also makes it an attractive candidate regulator of MDSC recruitment. We hypothesized that tumor-expressed iNOS controls MDSC accumulation and acquisition of suppressive activity in melanoma. CD11b(+)GR1(+) MDSC derived from mouse bone marrow cells cultured in the presence of MT-RET-1 mouse melanoma cells or conditioned supernatants expressed STAT3 and reactive oxygen species (ROS) and efficiently suppressed T cell proliferation. Inhibition of tumor-expressed iNOS with the small molecule inhibitor L-NIL blocked accumulation of STAT3/ROS-expressing MDSC, and abolished their suppressive function. Experiments with vascular endothelial growth factor (VEGF)-depleting Ab and recombinant VEGF identified a key role for VEGF in the iNOS-dependent induction of MDSC. These findings were further validated in mice bearing transplantable MT-RET-1 melanoma, in which L-NIL normalized elevated serum VEGF levels; downregulated activated STAT3 and ROS production in MDSC; and reversed tumor-mediated immunosuppression. These beneficial effects were not observed in iNOS knockout mice, suggesting L-NIL acts primarily on tumor- rather than host-expressed iNOS to regulate MDSC function. A significant decrease in tumor growth and a trend toward increased tumor-infiltrating CD8(+) T cells were also observed in MT-RET transgenic mice bearing spontaneous tumors. These data suggest a critical role for tumor-expressed iNOS in the recruitment and induction of functional MDSC by modulation of tumor VEGF secretion and upregulation of STAT3 and ROS in MDSC.  相似文献   

10.
11.
The progesterone analog medroxyprogesterone acetate (MPA) is widely used as a hormone replacement therapy in postmenopausal women and as contraceptive. However, prolonged administration of MPA is associated with increased incidence of breast cancer through ill-defined mechanisms. Here, we explored whether exposure to MPA during mammary tumor growth affects myeloid-derived suppressor cells (MDSCs; CD11b+Gr-1+, mostly CD11b+Ly6G+Ly6Cint and CD11b+Ly6G?Ly6Chigh cells) and natural killer (NK) cells, potentially restraining tumor immunosurveillance. We used the highly metastatic 4T1 breast tumor (which does not express the classical progesterone receptor and expands MDSCs) to challenge BALB/c mice in the absence or in the presence of MPA. We observed that MPA promoted the accumulation of NK cells in spleens of tumor-bearing mice, but with reduced degranulation ability and in vivo cytotoxic activity. Simultaneously, MPA induced a preferential expansion of CD11b+Ly6G+Ly6Cint cells in spleen and bone marrow of 4T1 tumor-bearing mice. In vitro, MPA promoted nuclear mobilization of the glucocorticoid receptor (GR) in 4T1 cells and endowed these cells with the ability to promote a preferential differentiation of bone marrow cells into CD11b+Ly6G+Ly6Cint cells that displayed suppressive activity on NK cell degranulation. Sorted CD11b+Gr-1+ cells from MPA-treated tumor-bearing mice exhibited higher suppressive activity on NK cell degranulation than CD11b+Gr-1+ cells from vehicle-treated tumor-bearing mice. Thus, MPA, acting through the GR, endows tumor cells with an enhanced capacity to expand CD11b+Ly6G+Ly6Cint cells that subsequently display a stronger suppression of NK cell-mediated anti-tumor immunity. Our results describe an alternative mechanism by which MPA may affect immunosurveillance and have potential implication in breast cancer incidence.  相似文献   

12.
Extracellular adenosine and purine nucleotides are elevated in many pathological situations associated with the expansion of CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs). Therefore, we tested whether adenosinergic pathways play a role in MDSC expansion and functions. We found that A(2B) adenosine receptors on hematopoietic cells play an important role in accumulation of intratumoral CD11b(+)Gr1(high) cells in a mouse Lewis lung carcinoma model in vivo and demonstrated that these receptors promote preferential expansion of the granulocytic CD11b(+)Gr1(high) subset of MDSCs in vitro. Flow cytometry analysis of MDSCs generated from mouse hematopoietic progenitor cells revealed that the CD11b(+)Gr-1(high) subset had the highest levels of CD73 (ecto-5'-nucleotidase) expression (Δmean fluorescence intensity [MFI] of 118.5 ± 16.8), followed by CD11b(+)Gr-1(int) (ΔMFI of 57.9 ± 6.8) and CD11b(+)Gr-1(-/low) (ΔMFI of 12.4 ± 1.0) subsets. Even lower levels of CD73 expression were found on Lewis lung carcinoma tumor cells (ΔMFI of 3.2 ± 0.2). The high levels of CD73 expression in granulocytic CD11b(+)Gr-1(high) cells correlated with high levels of ecto-5'-nucleotidase enzymatic activity. We further demonstrated that the ability of granulocytic MDSCs to suppress CD3/CD28-induced T cell proliferation was significantly facilitated in the presence of the ecto-5'-nucleotidase substrate 5'-AMP. We propose that generation of adenosine by CD73 expressed at high levels on granulocytic MDSCs may promote their expansion and facilitate their immunosuppressive activity.  相似文献   

13.
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ∼50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.  相似文献   

14.
Myeloid-derived suppressor cells (MDSC) are believed to play a role in immune suppression and subsequent failure of T cells to mount an efficient anti-tumor response, by employing both direct T-cell inhibition as well as induction of regulatory T cells (Tregs). Investigating the frequency and function of immune suppressive cell subsets in the peripheral blood of 41 patients with prostate cancer (PC) and 36 healthy donors (HD) showed a significant increase in circulating CD14+ HLA-DRlow/neg monocytic MDSC (M-MDSC) and Tregs in patients with PC compared to HD. Furthermore, M-MDSC frequencies correlated positively with Treg levels. In vitro proliferation assay with autologous T cells confirmed M-MDSC-mediated T-cell suppression, and intracellular staining of immune suppressive enzyme iNOS revealed a higher expression in M-MDSC from patients with PC. Increased frequencies of M-MDSC correlated with known negative prognostic markers in patients with PC including elevated levels of lactate dehydrogenase and prostate-specific antigen. Accordingly, high levels of M-MDSC were associated with a shorter median overall survival. Our data strongly suggest that M-MDSC, possibly along with Tregs, play a role in establishing an immune suppressive environment in patients with PC. Moreover, correlation of M-MDSC frequency with known prognostic markers and the observed impact on OS could reflect a possible role in tumor progression. Further insight into the generation and function of MDSC and their interplay with Tregs and other cell types may suggest ways to tackle their induction and/or function to improve immunological tumor control.  相似文献   

15.
Suppression of tumor-specific T cell sensitization is a predominant mechanism of tumor escape. To identify tumor-induced suppressor cells, we transferred spleen cells from mice bearing progressive MCA205 sarcoma into sublethally irradiated mice. These mice were then inoculated subdermally with tumor cells to stimulate T cell response in the tumor-draining lymph-node (TDLN). Tumor progression induced splenomegaly with a dramatic increase (22.1%) in CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) compared with 2.6% of that in normal mice. Analyses of therapeutic effects by the adoptive immunotherapy revealed that the transfer of spleen cells from tumor-bearing mice severely inhibited the generation of tumor-immune T cells in the TDLN. We further identified MDSC to be the dominant suppressor cells. However, cells of identical phenotype from normal spleens lacked the suppressive effects. The suppression was independent of CD4(+)CD25(+) regulatory T cells. Intracellular IFN-gamma staining revealed that the transfer of MDSC resulted in a decrease in numbers of tumor-specific CD4(+) and CD8(+) T cells. Transfer of MDSC from MCA207 tumor-bearing mice also suppressed the MCA205 immune response indicating a lack of immunologic specificity. Further analyses demonstrated that MDSC inhibited T cell activation that was triggered either by anti-CD3 mAb or by tumor cells. However, MDSC did not suppress the function of immune T cells in vivo at the effector phase. Our data provide the first evidence that the systemic transfer of MDSC inhibited and interfered with the sensitization of tumor-specific T cell responses in the TDLN.  相似文献   

16.
Myeloid suppressor cells are a heterogeneous group of myeloid cells that are increased in patients with chronic myeloid leukaemia (CML) inducing T cell tolerance. In this study, we found that therapy with tyrosine kinase inhibitors (TKI) decreased the percentage of granulocytic MDSC, but only patients treated with dasatinib showed a significant reduction in the monocytic subset (M‐MDSC). Moreover, a positive correlation was observed between number of persistent M‐MDSC and the value of major molecular response in dasatinib‐treated patients. Serum and exosomes from patients with CML induced conversion of monocytes from healthy volunteers into immunosuppressive M‐MDSC, suggesting a bidirectional crosstalk between CML cells and MDSC. Overall, we identified M‐MDSC as prognostic factors in patients treated with dasatinib. It might be of interest to understand whether MDSC may be a candidate predictive markers of relapse risk following TKI discontinuation, suggesting their potential significance as practice of precision medicine.  相似文献   

17.
In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14+CD141+DC-SIGN+ DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a+ subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8+ T cells, migration of immature CD14+ DDC was accompanied by increased release of IL-10, poor expansion of CD4+ and CD8+ T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.  相似文献   

18.
IL-12 is a potent immunostimulatory cytokine, but its impact as an antitumor drug in clinical practice is limited. Upsurge of regulatory T cells (Treg) in the tumor milieu has been proposed to limit the efficacy of the treatment. In this paper, two drugs (cyclophosphamide [CPA] and anti-CD25 mAb) widely used to eliminate Treg were used in an attempt to enhance the antitumor effect of IL-12 gene therapy. Both anti-CD25 and CPA combined with IL-12 were able to deplete intratumoral Treg and myeloid-derived suppressor cells (MDSC), but only IL-12 plus CPA achieved significant antitumor activity in mice with large established s.c. colon carcinoma. This therapeutic effect was associated with the emergence of a heterogeneous population of myeloid cells within the tumor, termed inflammatory myeloid cells (IMC), composed of Ly6C(high)Ly6G(low) inflammatory monocytes and Ly6G(high)Ly6C(+) neutrophils. IMC showed a distinctive pattern of cytokine/chemokine production, and in contrast to MDSC, they did not induce conversion of naive CD4(+) T cells into Treg. The appearance of IMC coincided with intense tumor infiltration by effector T cells, which was abrogated by elimination of IMC by anti-Gr1 mAb, a maneuver that abolished the antitumor effect of the therapy. Therefore, the combination of IL-12 and CPA eliminates intratumoral Treg and MDSC, while it induces the appearance of IMC within the tumor microenvironment. The latter effect is essential to facilitate effector T cell infiltration and subsequent tumor elimination.  相似文献   

19.
The development of classically activated monocytic cells (M1) is a prerequisite for effective elimination of parasites, including African trypanosomes. However, persistent activation of M1 that produce pathogenic molecules such as TNF and NO contributes to the development of trypanosome infection-associated tissue injury including liver cell necrosis in experimental mouse models. Aiming to identify mechanisms involved in regulation of M1 activity, we have recently documented that during Trypanosoma brucei infection, CD11b+Ly6C+CD11c+ TNF and iNOS producing DCs (Tip-DCs) represent the major pathogenic M1 liver subpopulation. By using gene expression analyses, KO mice and cytokine neutralizing antibodies, we show here that the conversion of CD11b+Ly6C+ monocytic cells to pathogenic Tip-DCs in the liver of T. brucei infected mice consists of a three-step process including (i) a CCR2-dependent but CCR5- and Mif-independent step crucial for emigration of CD11b+Ly6C+ monocytic cells from the bone marrow but dispensable for their blood to liver migration; (ii) a differentiation step of liver CD11b+Ly6C+ monocytic cells to immature inflammatory DCs (CD11c+ but CD80/CD86/MHC-IIlow) which is IFN-γ and MyD88 signaling independent; and (iii) a maturation step of inflammatory DCs to functional (CD80/CD86/MHC-IIhigh) TNF and NO producing Tip-DCs which is IFN-γ and MyD88 signaling dependent. Moreover, IL-10 could limit CCR2-mediated egression of CD11b+Ly6C+ monocytic cells from the bone marrow by limiting Ccl2 expression by liver monocytic cells, as well as their differentiation and maturation to Tip-DCs in the liver, showing that IL-10 works at multiple levels to dampen Tip-DC mediated pathogenicity during T. brucei infection. A wide spectrum of liver diseases associates with alteration of monocyte recruitment, phenotype or function, which could be modulated by IL-10. Therefore, investigating the contribution of recruited monocytes to African trypanosome induced liver injury could potentially identify new targets to treat hepatic inflammation in general, and during parasite infection in particular.  相似文献   

20.
CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号