首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor tyrosine kinase Ror2 plays important roles in developmental morphogenesis. It has recently been shown that Ror2 mediates Wnt5a-induced noncanonical Wnt signaling by activating the Wnt-JNK pathway and inhibiting the beta-catenin-TCF pathway. However, the function of Ror2 in noncanonical Wnt signaling leading to cell migration is largely unknown. We show, using genetically different or manipulated cultured cells, that Ror2 is critical for Wnt5a-induced, but not Wnt3a-induced, cell migration. Ror2-mediated cell migration requires the extracellular cysteine-rich domain (CRD), which is the binding site for Wnt5a, and the cytoplasmic proline-rich domain (PRD) of Ror2. Furthermore, Ror2 can mediate filopodia formation via actin reorganization, irrespective of Wnt5a, and this Ror2-mediated filopodia formation requires the actin-binding protein filamin A, which associates with the PRD of Ror2. Intriguingly, disruption of filopodia formation by suppressing the expression of either Ror2 or filamin A inhibits Wnt5a-induced cell migration, indicating that Ror2-mediated filopodia formation is essential for Wnt5a-induced cell migration.  相似文献   

2.
3.
Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.  相似文献   

4.
5.
6.
The signaling molecule Wnt regulates bone homeostasis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Impairment of canonical Wnt signaling causes bone loss in arthritis and osteoporosis; however, it is unclear how noncanonical Wnt signaling regulates bone resorption. Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor (Ror) proteins. We showed that Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhanced osteoclastogenesis. Osteoblast-lineage cells expressed Wnt5a, whereas osteoclast precursors expressed Ror2. Mice deficient in either Wnt5a or Ror2, and those with either osteoclast precursor-specific Ror2 deficiency or osteoblast-lineage cell-specific Wnt5a deficiency showed impaired osteoclastogenesis. Wnt5a-Ror2 signals enhanced receptor activator of nuclear factor-κB (RANK) expression in osteoclast precursors by activating JNK and recruiting c-Jun on the promoter of the gene encoding RANK, thereby enhancing RANK ligand (RANKL)-induced osteoclastogenesis. A soluble form of Ror2 acted as a decoy receptor of Wnt5a and abrogated bone destruction in mouse arthritis models. Our results suggest that the Wnt5a-Ror2 pathway is crucial for osteoclastogenesis in physiological and pathological environments and represents a therapeutic target for bone diseases, including arthritis.  相似文献   

7.
8.
The receptor tyrosine kinase Ror2 has recently been shown to act as an alternative receptor or coreceptor for Wnt5a and to mediate Wnt5a-induced migration of cultured cells. However, little is known about the molecular mechanism underlying this migratory process. Here we show by wound-healing assays that Ror2 plays critical roles in Wnt5a-induced cell migration by regulating formation of lamellipodia and reorientation of microtubule-organizing center (MTOC). Wnt5a stimulation induces activation of the c-Jun N-terminal kinase JNK at the wound edge in a Ror2-dependent manner, and inhibiting JNK activity abrogates Wnt5a-induced lamellipodia formation and MTOC reorientation. Additionally, the association of Ror2 with the actin-binding protein filamin A is required for Wnt5a-induced JNK activation and polarized cell migration. We further show that Wnt5a-induced JNK activation and MTOC reorientation can be suppressed by inhibiting PKCzeta. Taken together, our findings indicate that Wnt5a/Ror2 activates JNK, through a process involving filamin A and PKCzeta, to regulate polarized cell migration.  相似文献   

9.
10.
To understand the role of the colonic extracellular calcium-sensing receptor (CaSR) in calcium chemoprotection against colon cancer, we activated the CaSR with 5 mM Ca(2+) on HT-29 cells, an adenocarcinoma cell line. High Ca(2+) stimulated the upregulation (as assessed by RT-PCR) and the secretion of Wnt5a (assessed by Western blot), a noncanonical Wnt family member. Inhibiting CaSR activity with a short interfering RNA (siRNA) duplex against the CaSR reduced CaSR protein and prevented the secretion of Wnt5a. Dominant negative CaSR (R185Q) or siRNA blocked the high Ca(2+)-mediated inhibition of the beta-catenin reporter TOPflash. The CaSR/Wnt5a inhibition of beta-catenin reporter was prevented by dominant negative ubiquitin ligase seven in absentia homolog 2 (Siah2). In low-calcium medium, overexpressing Wnt5a increased Siah2 amplicons and protein. Inducing the expression of full-length adenomatous polyposis coli (APC) prevented CaSRmediated increases of Siah2 and Wnt5a. Overexpressing the receptor tyrosine kinase-like orphan receptor 2 (Ror2) increased Wnt5a and CaSR-mediated inhibition of TOPflash. Conditioned medium from Wnt5a-transfected cells added to HT-29 cells in low-Ca(2+) medium inhibited the beta-catenin reporter. This inhibition was blocked dose responsively by Frizzled-8/Fc chimeric antibody. Overexpression of Ror2 in HT-29 cells in low-Ca(2+) medium increased the inhibition of beta-catenin reporter caused by recombinant Wnt5a protein compared with addition of Wnt5a protein alone. Our findings demonstrate that APC status plays a key role as a determinant of Wnt5a secretion and suggest that CaSR-mediated secretion of Wnt5a will inhibit defective Wnt signaling in APC-truncated cells in an autocrine manner.  相似文献   

11.
Wnts are secreted glycoproteins that control vital biological processes, including embryogenesis, organogenesis and tumorigenesis. Wnts are classified into several subfamilies depending on the signaling pathways they activate, with the canonical subfamily activating the Wnt/beta-catenin pathway and the non-canonical subfamily activating a variety of other pathways, including the Wnt/calcium signaling and the small GTPase/c-Jun NH2-terminal kinase pathway. Wnts bind to a membrane receptor Frizzled and a co-receptor, the low-density lipoprotein receptor related protein. More recently, both canonical and non-canonical Wnts were shown to bind the Ror2 receptor tyrosine kinase. Ror2 is an orphan receptor that plays crucial roles in skeletal morphogenesis and promotes osteoblast differentiation and bone formation. Here we examine the effects of a canonical Wnt3a and a non-canonical Wnt5a on the signaling of the Ror2 receptor. We demonstrate that even though both Wnt5a and Wnt3a bound Ror2, only Wnt5a induced Ror2 homo-dimerization and tyrosine phosphorylation in U2OS human osteoblastic cells. Furthermore, Wnt5a treatment also resulted in increased phosphorylation of the Ror2 substrate, 14-3-3beta scaffold protein, indicating that Wnt5a binding causes activation of the Ror2 signaling cascade. Functionally, Wnt5a recapitulated the Ror2 activation phenotype, enhancing bone formation in the mouse calvarial bone explant cultures and potentiating osteoblastic differentiation of human mesenchymal stem cells. The effect of Wnt5a on osteoblastic differentiation was largely abolished upon Ror2 down-regulation. Thus we show that Wnt5a activates the classical receptor tyrosine kinase signaling cascade through the Ror2 receptor in cells of osteoblastic origin.  相似文献   

12.
In the past twenty years, secreted signaling molecules of the Wnt family have been found to play a central role in controlling embryonic development from hydra to human. In the developing vertebrate limb, Wnt signaling is required for limb bud initiation, early limb patterning (which is governed by several well-characterized signaling centers), and, finally, late limb morphogenesis events. Wnt ligands are unique, in that they can activate several different receptor-mediated signal transduction pathways. The most extensively studied Wnt pathway is the canonical Wnt pathway, which controls gene expression by stabilizing beta-catenin in regulating a diverse array of biological processes. Recently, more attention has been given to the noncanonical Wnt pathway, which is beta-catenin-independent. The noncanonical Wnt pathway signals through activating Ca(2+) flux, JNK activation, and both small and heterotrimeric G proteins, to induce changes in gene expression, cell adhesion, migration, and polarity. Abnormal Wnt signaling leads to developmental defects and human diseases affecting either tissue development or homeostasis. Further understanding of the biological function and signaling mechanism of Wnt signaling is essential for the development of novel preventive and therapeutic approaches of human diseases. This review provides a critical perspective on how Wnt signaling regulates different developmental processes. As Wnt signaling in tumor formation has been reviewed extensively elsewhere, this part is not included in the review of the clinical significance of Wnt signaling.  相似文献   

13.
Wnt ligands bind receptors of the Frizzled (Fz) family to control cell fate, proliferation, and polarity. Canonical Wnt/Fz signaling stabilizes beta-catenin by inactivating GSK3beta, leading to the translocation of beta-catenin to the nucleus and the activation of Wnt target genes. Noncanonical Wnt/Fz signaling activates RhoA and Rac, and the latter triggers the activation of c-Jun N-terminal kinase (JNK). Here, we show that exposure of B-lymphocytes to Wnt3a-conditioned media activates JNK and raises cytosolic beta-catenin levels. Both the Rac guanine nucleotide exchange factor Asef and the mitogen-activated protein kinase kinase kinase kinase germinal center kinase-related enzyme (GCKR) are required for Wnt-mediated JNK activation in B cells. In addition, we show that GCKR positively affects the beta-catenin pathway in B cells. Reduction of GCKR expression inhibits Wnt3a-induced phosphorylation of GSK3beta at serine 9 and decreases the accumulation of cytosolic beta-catenin. Furthermore, Wnt signaling induces an interaction between GCKR and GSK3beta. Our findings demonstrate that GCKR facilitates both canonical and noncanonical Wnt signaling in B lymphocytes.  相似文献   

14.
Extracellular Wnt ligands and their receptors of the Frizzled family control cell fate, proliferation, and polarity during metazoan development. Frizzled signaling modulates target gene expression through a beta-catenin-dependent pathway, functions to establish planar cell polarity in Drosophila epithelia, and activates convergent extension movements and intracellular Ca(2+) signaling in frog and fish embryos. Here, we report that a Frizzled receptor, Xenopus Frizzled 8 (Xfz8), activates c-Jun N-terminal kinases (JNK) and triggers rapid apoptotic cell death in gastrulating Xenopus embryos. This activity of Xfz8 required the cytoplasmic tail of the receptor and was blocked by a dominant inhibitor of JNK. Moreover, the cytoplasmic tail of Xfz8 targeted to the membrane was sufficient for activation of JNK and apoptosis. The apoptotic signaling was shared by a specific subset of Frizzled receptors, was inhibited by Wnt5a, and occurred in a Dishevelled- and T cell factor (TCF)-independent manner. Thus, our experiments identify a novel Frizzled-dependent signaling pathway, which involves JNK and differs from the beta-catenin-dependent and convergent extension pathways.  相似文献   

15.
The receptor tyrosine kinase Ror2 acts as a receptor or coreceptor for Wnt5a to mediate Wnt5a-induced activation of the Wnt/JNK pathway and inhibition of the β-catenin-dependent canonical Wnt pathway. However, little is known about how Ror2 cooperates with another receptor component(s) to mediate Wnt5a signaling. We show here that Ror2 regulates Wnt5a-induced polymerization of Dishevelled (Dvl) and that this Ror2-mediated regulation of Dvl is independent of the cytoplasmic region of Ror2. Ror2 can associate with Frizzled7 (Fz7) via its extracellular cysteine-rich domain to form a receptor complex that is required for the regulation of Dvl and activation of the AP-1 promoter after Wnt5a stimulation. Suppressed expression of Fz7 indeed results in the inhibition of Wnt5a-induced polymerization of Dvl and AP-1 activation. Interestingly, both the DIX and the DEP domains of Dvl are indispensable for Dvl polymerization and subsequent AP-1 activation after Wnt5a stimulation. We further show that polymerized Dvl is colocalized with Rac1 and that suppressed expression of Rac1 inhibits Wnt5a-induced AP-1 activation. Collectively, our results indicate that Ror2/Fz receptor complex plays an important role in the Wnt5a/Rac1/AP-1 pathway by regulating the polymerization of Dvl.Wnt proteins can elicit β-catenin-dependent and -independent signaling pathways (2, 20, 46). Ror2 is a member of the Ror family of receptor tyrosine kinases and plays essential roles in developmental morphogenesis (21, 26, 31, 32, 44). Ror2 has been shown to act as a receptor or coreceptor for Wnt5a to activate the β-catenin-independent signaling pathway, involving JNK/c-Jun (AP-1), Src and Ca2+, which are essential for cell polarity, migration, and cancer cell invasion (8, 14, 28-31, 37). Wnt5a/Ror2 signaling also plays a crucial role in inhibiting the β-catenin-dependent signaling pathway (25). Structure-function analyses of Ror2 revealed that Ror2 mediates Wnt5a signaling through distinct mechanisms dependent on and independent of its kinase activity, i.e., Wnt5a-induced migration of fibroblast cells requires the cytoplasmic C-terminal portion of Ror2 but not its intrinsic kinase activity (28), whereas the intrinsic kinase activity of Ror2 is indispensable for extracellular matrix (ECM) degradation of osteosarcoma cells (8). In addition, inhibition of the β-catenin-dependent signaling pathway by Wnt5a also requires the intrinsic kinase activity of Ror2 (24). Importantly, the Caenorhabditis elegans ortholog of Ror2, CAM-1, also has the kinase activity-dependent and -independent functions (9, 12, 13). Furthermore, CAM-1 exhibits the cytoplasmic region-independent functions, including cell migration (17), synaptic transmission at the neuromuscular junction (10), and inhibition of the β-catenin-dependent signaling pathway (11), although their underlying molecular mechanisms remain to be determined. However, it is unknown whether or not Ror2 also exhibits the cytoplasmic region-independent functions in other organisms.Dishevelled (Dvl) is an essential mediator of both the β-catenin-dependent and -independent signaling pathways. We have previously reported that both Ror2 and Dvl are required for Wnt5a-induced cell migration (28). However, the relationship between Ror2 and Dvl in Wnt5a signaling remains unclear. It has been reported that Dvl has an ability to form dynamic polymers, which are crucial for activating the β-catenin-dependent signaling pathway probably by serving as a scaffold for Axin recruitment (39, 41). However, there is no direct evidence showing that Wnt stimulation indeed induces dynamic formation of Dvl polymers. In addition, it remains unclear whether or not the polymerization of Dvl is involved in the β-catenin-independent signaling pathway.In the present study we show that Wnt5a induces dynamic polymerization of Dvl2 via a receptor complex containing both Ror2 and Frizzled (Fz)7, even in the absence of the cytoplasmic region of Ror2. We further provide evidence indicating that Ror2/Fz7 receptor complex plays an important role in Wnt5a/Rac1/AP-1 pathway by regulating polymerization of Dvl2.  相似文献   

16.
Wnt proteins form a family of secreted glycoproteins that are involved in different developmental processes such as differentiation, proliferation, cell migration and cell polarity. To exert its function, Wnt proteins activate different intracellular signaling cascades. Whereas the canonical, Wnt/beta-catenin pathway is well characterized, less is known about the function of non-canonical Wnt pathways in vertebrates. I here summarize recent findings implicating important roles for Wnt/Ca(2+) and Wnt/JNK signaling during different aspects of early Xenopus laevis development, namely axis formation and gastrulation movements.  相似文献   

17.
18.
19.
Tauroursodeoxychate (TUDCA) is used for the treatment of cholangiopathies including primary sclerosing cholangitis, which is considered the primary risk factor for cholangiocarcinoma. The effect of TUDCA on cholangiocarcinoma growth is unknown. We evaluated the role of TUDCA in the regulation of growth of the cholangiocarcinoma cell line Mz-ChA-1. TUDCA inhibited the growth of Mz-ChA-1 cells in concentration- and time-dependent manners. TUDCA inhibition of cholangiocarcinoma growth was blocked by BAPTA-AM, an intracellular Ca(2+) concentration ([Ca(2+)](i)) chelator, and H7, a PKC-alpha inhibitor. TUDCA increased [Ca(2+)](i) and membrane translocation of the Ca(2+)-dependent PKC-alpha in Mz-ChA-1 cells. TUDCA inhibited the activity of MAPK, and this inhibitory effect of TUDCA was abrogated by BAPTA-AM and H7. TUDCA did not alter the activity of Raf-1 and B-Raf and the phosphorylation of MAPK p38 and JNK/stress-activated protein kinase. TUDCA inhibits Mz-ChA-1 growth through a signal-transduction pathway involving MAPK p42/44 and PKC-alpha but independent from Raf proteins and MAPK p38 and JNK/stress-activated protein kinases. TUDCA may be important for the treatment of cholangiocarcinoma.  相似文献   

20.

Background  

Wnt signaling is mediated through 1) the beta-catenin dependent canonical pathway and, 2) the beta-catenin independent pathways. Multiple receptors, including Fzds, Lrps, Ror2 and Ryk, are involved in Wnt signaling. Ror2 is a single-span transmembrane receptor-tyrosine kinase (RTK). The functions of Ror2 in mediating the non-canonical Wnt signaling have been well established. The role of Ror2 in canonical Wnt signaling is not fully understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号