首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The purpose of this study was to examine the output properties of muscle power by the dominant upper limb using SSC, and the relationships between the power output by SSC and a one-repetition maximum bench press (1 RM BP) used as a strength indicator of the upper body. Sixteen male athletes (21.4+/-0.9 yr) participated in this study. They pulled a load of 40% of maximum voluntary contraction (MVC) at a stretch by elbow flexion of the dominant upper limb in the following three preliminary conditions: static relaxed muscle state (SR condition), isometric muscle contraction state (ISO condition), and using SSC (SSC condition). The velocity with a wire load via a pulley during elbow flexion was measured accurately using a power instrument with a rotary encoder, and the muscle power curve was drawn from the product of the velocity and load. Significant differences were found among all evaluation parameters of muscle power exerted from the above three conditions and the parameters regarding early power output during concentric contraction were larger in the SSC condition than the SR and ISO conditions. The parameters on initial muscle contraction velocity when only using SSC significantly correlated with 1 RM BP (r=0.60-0.62). The use of SSC before powerful elbow flexion may contribute largely to early explosive power output during concentric contraction. Bench press capacity relates to a development of the above early power output when using SSC.  相似文献   

2.
The electrically evoked and voluntary contractile properties of the first dorsal interosseous muscle were measured on both hands in 10 healthy adults. The force of abduction of the index finger interosseous muscle was measured using a transducer resting against the lateral side of the proximal interphalangeal joint. The mean values of time to peak tension measured on the dominant hands were significantly slower than the values on the non-dominant hands (P less than 0.01) in a paired t-test. Maximal tetanic tension, maximal voluntary contraction strength, and maximal twitch tension are not significantly different. Fatigue indices on the dominant hands in each subject were higher than those on the non-dominant hands. The correlation coefficient between fatigue indices on the dominant and the non-dominant hand was 0.92 (P less than 0.01).  相似文献   

3.
Maximum handgrip strength and endurance of fatiguing isometric handgrip muscle contraction at 40% of maximum voluntary contraction of the dominant hand were assessed separately for both right and left hands of 99 right-handed men aged 7-73 years. Subjects below 10 years (n = 6) could not follow up the endurance test methods and were excluded. The relationship of handgrip strength and endurance with age and other physical parameters was also assessed. Maximum grip strength and endurance of fatiguing submaximal contraction of the right hand were significantly greater than that of the left hand for most age groups. Grip strength was positively correlated with age from 7-19 years (r = 0.94 for right and r = 0.89 for left) and was negatively correlated with age from 20-73 years (r = -0.74 right and r = -0.69 left). Grip strength was positively correlated with the weight (r = 0.86 right and r = 0.87 left), height (r = 0.88 right and r = 0.87 left) and body surface area (r = 0.9 for both) of the subjects. Endurance of contraction of both hands did not show any relationship with age, different physical parameters or grip strength of the subjects.  相似文献   

4.
The purpose of the study was to examine age-related differences in electromyographic (EMG) responses to transcranial magnetic stimulation (TMS) during functional isometric contractions in left and right hands. EMG responses were recorded from the first dorsal interosseus muscle following TMS in 10 young (26.6 +/- 1.3 yr) and 10 old (67.6 +/- 2.3 yr) right-handed subjects. Muscle evoked potentials (MEPs) and silent-period durations were obtained in the left and right hands during index finger abduction, a precision grip, a power grip, and a scissor grip, while EMG was held constant at 5% of maximum. For all tasks, MEP area was 30% (P < 0.001) lower in the left hand of old compared with young subjects, whereas there was no age difference in the right hand. The duration of the EMG silent period was 14% (P < 0.001) shorter in old (150.3 +/- 2.9 ms) compared with young (173.9 +/- 3.0 ms) subjects, and the age differences were accentuated in the left hand (19% shorter, P < 0.001). For all subjects, the largest MEP area (10-12% larger) and longest EMG silent period (8-19 ms longer) were observed for the scissor grip compared with the other three tasks, and the largest task-dependent change in these variables was observed in the right hand of older adults. These differences in corticospinal control in the left and right hands of older adults may reflect neural adaptations that occur throughout a lifetime of preferential hand use for skilled (dominant) and unskilled (nondominant) motor tasks.  相似文献   

5.
This study aimed to examine the relationships between muscle power output using the stretch-shortening cycle (SSC) and eccentric maximum strength under elbow flexion. Eighteen young adult males pulled up a constant light load (2 kg) by ballistic elbow flexion under the following two preliminary conditions: 1) the static relaxed muscle state (SR condition), and 2) using the SSC with countermovement (SSC condition).Muscle power was determined from the product of the pulling velocity and the load mass by a power measurement instrument that adopted the weight-loading method. We assumed the pulling velocity to be the subject's muscle power parameters as a matter of convenience, because we used a constant load. The following two parameters were selected in reference to a previous study: 1) peak velocity (m x s(-1)) (peak power) and 2) 0.1-second velocity during concentric contraction (m x s(-1)) (initial power). Eccentric maximum strength by elbow flexion was measured by a handheld dynamometer.Initial power produced in the SSC condition was significantly larger than that in the SR condition. Eccentric maximum strength showed a significant and high correlation (r = 0.70) with peak power in the SSC condition but not in the SR condition. Eccentric maximum strength showed insignificant correlations with initial power in both conditions. In conclusion, it was suggested that eccentric maximum strength is associated with peak power in the SSC condition, but the contribution of the eccentric maximum strength to the SSC potentiation (initial power) may be low.  相似文献   

6.
This study aimed to examine the relationships between muscle power output using the stretch-shortening cycle (SSC) and maximum strength, as measured by the 1 RM (1 repetition maximum) test and the isokinetic dynamometer under elbow flexion. Sixteen trained, young adult males pulled a constant load of 40% MVC (maximum voluntary elbow flexion contraction) by ballistic elbow flexion under the following two preliminary conditions: 1) the static relaxed muscle state (SR condition) and 2) using the SSC (SSC condition). Muscle power was determined from the product of the pulling velocity and load mass by a power measurement instrument with a rotary encoder. The 1 RM bench press (1RM BP) and isokinetic maximum strength under elbow flexion with the Cybex-325 were measured as indicators of dynamic maximum strength. 1) The early power output exerted under the SSC condition showed a significant and high correlation with the 1 RM BP (r = 0.83), but only moderate correlation with the isokinetic muscle strength (r = 0.50-0.67). 2) The contribution of the 1 RM BP to the early muscle contraction velocity exerted under the SSC condition was large. These results suggested that muscle power exerted using the SSC shows a stronger relationship with maximum muscle strength measured by a 1 RM test rather than isokinetic maximum strength.  相似文献   

7.
This study tested the common assumption that skeletal muscle shortens uniformly in the direction of its fascicles during low-load contraction. Cine phase contrast magnetic resonance imaging was used to characterize shortening of the biceps brachii muscle in 12 subjects during repeated elbow flexion against 5 and 15% maximum voluntary contraction (MVC) loads. Mean shortening was relatively constant along the anterior boundary of the muscle and averaged 21% for both loading conditions. In contrast, mean shortening was nonuniform along the centerline of the muscle during active elbow flexion. Centerline shortening in the distal region of the biceps brachii (7.3% for 5% MVC and 3.7% for 15% MVC) was significantly less (P < 0.001) than shortening in the muscle midportion (26.3% for 5% MVC and 28.2% for 15% MVC). Nonuniform shortening along the centerline was likely due to the presence of an internal aponeurosis that spanned the distal third of the longitudinal axis of the biceps brachii. However, muscle shortening was also nonuniform proximal to the centerline aponeurosis. Because muscle fascicles follow the anterior contour and centerline of the biceps brachii, our results suggest that shortening is uniform along anterior muscle fascicles and nonuniform along centerline fascicles.  相似文献   

8.
PURPOSE: The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. METHODS: Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. RESULTS: Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). CONCLUSION: This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.  相似文献   

9.
A comparison was carried out between the motor unit (MU) firing rate and the characteristics of the twitch and the fibre type composition of anconeus and triceps brachii. Fibre type composition (type I, type II) was determined in whole cross-sections of cadaver specimens. The proportion of type I fibre was 60%-67% in anconeus and 32-40% in the lateral head of triceps brachii. Reflecting these histochemical differences, the contraction time of anconeus and triceps was 92 +/- 9 ms and 68 +/- 9 ms respectively. It follows that anconeus can be classified as a slow muscle, as opposed to the lateral head of triceps. The relationship between MU firing rate and isometric force, tested at 90 degrees elbow flexion, differed between the two muscles for force values below 30% of maximal voluntary contraction. No significant increase in MU firing rate was found in anconeus at forces above 5% of maximal voluntary contraction. It is concluded that even within a single agonistic muscle group acting at a single joint there is an adaptation of MU firing rate to the contractile characteristics of each muscle.  相似文献   

10.
The purpose of this study was to highlight the issues related to thickness-based muscle size evaluation that is commonly done in field studies. The cross-sectional area, thickness (the vertical distance from the upper end of the elbow flexors to that of the humerus) and width (the horizontal distance from the left to the right end of the elbow flexors) of the elbow flexors at levels from the reference site (60% of the upper arm length from the acromial process of the scapula to the lateral epicondyle of the humerus) to 5 cm distal to it were determined in 11 young men using magnetic resonance imaging, both at rest and during isometric elbow flexion at 30% of maximal voluntary contraction. During 30% of maximal voluntary contraction, the thickness increased but the width decreased at each measurement site compared with those at rest. This was possibly due to difference in muscle slackness between both conditions. The correlation coefficients between the thickness and cross-sectional area for the elbow flexors were significantly lower at rest (r=0.551-0.856) than during 30% of maximal voluntary contraction (r=0.711-0.922). The present findings indicate that the thickness-based muscle size measurement at rest includes errors owing to the slackness of the resting muscles.  相似文献   

11.
The purpose of this study was to examine whether fatigue of postural muscles might influence the coordination between segmental posture and movement. Seven healthy adults performed series of fifteen fast wrist flexions and extensions while being instructed to keep a dominant upper limb posture as constant as possible. These series of voluntary movements were performed before and after a fatiguing submaximal isometric elbow flexion, and also with or without the help of an elbow support. Surface EMG from muscles Delto?deus anterior, Biceps brachii, Triceps brachii, Flexor carpi ulnaris, Extensor carpi radialis were recorded simultaneously with wrist, elbow and shoulder accelerations and wrist and elbow displacements. Fatigue was evidenced by a shift of the elbow and shoulder muscles EMG spectra towards low frequencies. Kinematics of wrist movements and corresponding activations of wrist prime-movers, as well as the background of postural muscle activation before wrist movement were not modified. There were only slight changes in timing of postural muscle activations. These data indicate that postural fatigue induced by a low-level isometric contraction has no effect on voluntary movement and requires no dramatic adaptation in postural control.  相似文献   

12.
An analysis of horizontal elbow flexion at maximal velocity was made to determine how different loads affected power output. Twenty male subjects operated a specially constructed dynamometer initially performing a maximal effort isometric trial with the elbow fully extended and then three dynamic trials at each of three loads equal to 75, 50, and 25 per cent of the maximal isometric strength. Angular acceleration was used to calculate forearm torque, and power was obtained by taking the product of torque and angular velocity. Power was found to be a cubic function of time and a fourth-order polynomial function of angular displacement reaching a peak early in the movement. The 50 per cent load resulted in a higher peak level of power than either the 25 or 75 per cent loads.  相似文献   

13.
Velocity of movement has been suggested as a risk factor for low-back disorders. The effect of changes in velocity during unconstrained flexion-extension movements on muscle activations, spinal loads, base reaction forces and system stability was computed. In vivo measurements of kinematics and ground reaction forces were initially carried out on young asymptomatic subjects. The collected kinematics of three subjects representing maximum, mean and minimum lumbar rotations were subsequently used in the kinematics-driven model to compute results during the entire movements at three different velocities. Estimated spinal loads and muscle forces were significantly larger in fastest pace as compared to slower ones indicating the effect of inertial forces. Spinal stability was improved in larger trunk flexion angles and fastest movement. Partial or full flexion relaxation of global extensor muscles occurred only in slower movements. Some local lumbar muscles, especially in subjects with larger lumbar flexion and at slower paces, also demonstrated flexion relaxation. Results confirmed the crucial role of movement velocity on spinal biomechanics. Predictions also demonstrated the important role on response of the magnitude of peak lumbar rotation and its temporal variation.  相似文献   

14.
We determined the effect of elbow joint angle on the short-(M1) and long-latency stretch reflex (M2 and M3) responses of the elbow flexion synergists, the brachioradialis (BR), and the biceps brachii (BB), during weak isometric elbow flexion tasks. The elbow joint angle was 35,75 and 115 degrees (full-extension angle was 0 degrees ), and the muscle contraction level was 0,3 and 6% of maximum voluntary contraction (MVC) of the BR. In BR, the M1, M2 and M3 responses were significantly greater at 75 and 115 degrees than at 35 degrees. On the other hand, in BB, the M2 response was significantly greater at 35 degrees than at 75 and 115 degrees, while the M1 and M3 responses were not significantly different among the elbow joint angles. These results indicated that the stretch reflex responses of BR might be dependent on the changes of muscle length in stretch stimulus, while the M2 response of BB might not be dependent on the actual stimulus intensity. Therefore, we concluded that the M2 of BB might be modulated selectively by a higher reflex center in accordance with relationships of the mechanical advantages between synergistic muscles.  相似文献   

15.
48 male shift workers in various industries volunteered to document circadian rhythms in sleeping and working, oral temperature, grip strength of both hands, peak expiratory flow and heart rate. All physiological variables were self-measured 4 to 5 times a day for 2 to 4 weeks. Individual time series were analyzed according to several statistical methods (power spectrum, cosinor, chi squares, ANOVA, correlation, etc.) in order to estimate rhythm parameters such as circadian period (tau) and amplitude (A), and to evaluate subgroup differences with regard to tolerance to shift work, age, duration of shift work, speed of rotation and type of industry. The present study confirms for oral temperature and extends to other variables (grip strength of both hands, heart rate) that intolerance to shift work is frequently associated with both internal desynchronization and small circadian amplitude. The internal desynchronization among several circadian rhythms supports the hypothesis that these latter are driven by several oscillators. Many differences were observed between circadian rhythms in right and left hand grip strength: circadian tau in oral temperature was correlated with that in the grip strength of the dominant hand but not with that of the other hand; changes in tau s of the non-dominant hand were age-related but did not correlate with temperature tau; only the circadian A of the non-dominant hand was associated with a desynchronization. Thus, circadian rhythms in oral temperature and dominant hand grip strength may be driven by the same oscillator while that of the non-dominant hand may be governed by a different one. Internal desynchronization between both hand grip rhythms as well as desynchronization of performance rhythms reported by others provide indirect evidence that circadian oscillator(s) may be located in the human cerebral cortex.  相似文献   

16.
Optimizing transference of gym-based strength and power gains to sporting performance necessitates a physiological and biomechanical understanding of the weight-training exercise as well as the sporting activity. With this in mind, this paper describes the kinematics and kinetics associated with a seated row. The maximal strength and concentric power-load spectrum (30- 100% 1 repetition maximum [1RM]) for the cable seated row was assessed using Olympic rowers (n = 8). In terms of temporal characteristics, peak force across all loads occurred within the first 25% of movement time. Peak power across loads occurred within 35-45% of movement time. With regard to position, peak force occurred within 8.3% and peak power within 27-35% of the start of the concentric phase. To estimate the load that maximized mechanical power output, a quadratic was fitted to each subject's power output vs. 1RM. In terms of mean power, an estimated load of 81.4% (+/- 9.7%) 1RM was found to maximize power output. A 10 and 20% change in load each side of this maximum resulted in a 1.8 and 7.3% decrease in power output, respectively. The predilection of research to train all subjects at 1 load is fundamentally flawed due to interindividual maximum power differences (range in this study = 69-100% 1RM). Also, the importance of this measure would seem questionable, given that loads either side of the load that maximize power output do not change power output substantially.  相似文献   

17.
Biomechanical characteristics of the one-handed dumbbell power snatch (DBPS) were examined to determine whether significant differences existed between unilateral and bilateral weightlifting movements. Kinetic and kinematic movement data were recorded from 10 male weightlifters (mean +/- SD: age: 30.2 +/- 10.2 years; height: 174.2 +/- 4.4 cm; body mass: 81.5 +/- 14.6 kg) during one-handed dumbbell (DB) and traditional barbell (BBPS) power snatch performance with loads of approximately 80% of respective lift one repetition maximums (1RM) with the use of 2 synchronized Kistler force plates and high-speed 3-dimensional video. Results highlighted asymmetry in the ground reaction force and kinematic profile of the DBPS, which deviated from the observed patterns of the bilateral movement. This study found that the nonlifting side (the side corresponding with the hand that did not hold the DB) tended to generate a greater pull phase peak vertical ground reaction forces significantly faster (p = 0.001) than the lifting side (the side corresponding with the hand that held the DB) during the DBPS. In addition, the DBPS nonlifting side catch phase loading rate was approximately double that of the lifting side loading rate (p < 0.05). These results quantify symmetrical deviations in the movement patterns of the unilateral power snatch movement both during the concentric muscular contraction of load vertical displacement, and the loading implications of unilateral landing. This asymmetry supports the contention that unilateral variations of weightlifting movements may provide a different training stimulus to athletes.  相似文献   

18.
The purposes of this study were to examine age and gender differences in knee extensor strength, power, and fatigue using open- and closed-chain testing procedures. We tested the hypothesis that specific strength (strength/unit muscle mass) would not differ by age, whereas age differences in specific power and fatigue would remain consequent to blunted maximal contractile velocity. Skeletal muscle performance was examined in 28 young (26.9 +/- 0.7 yr) and 24 older (63.6 +/- 0.8 yr) men and women. Assessments included one-repetition maximum strength for knee extension, leg press, and squat; concentric knee extensor peak power, velocity, and fatigability; and sit-to-stand power, fatigability, and relative neural activation (electromyograph activity during sit-to-stand movement normalized to electromyograph activity during isometric maximum voluntary contraction). Thigh lean mass (TLM; kg) was assessed by dual-energy X-ray absorptiometry. Specific strength (N/kg TLM) and specific power (W/kg TLM) were estimated by dividing absolute values by TLM. Age differences in specific strength were observed for knee extension only (young, 41.2 +/- 1.0 N/kg TLM; older, 32.4 +/- 1.0 N/kg TLM; P < 0.05). Adjustment for TLM did not negate age differences in knee extension specific power (25-41% lower in older; P < 0.05) across loads tested. Older adults experienced fatigue across 10 repetitions of knee extension as peak velocity fell by 24% (P < 0.05). Deficits in concentric power persist after adjustment for TLM as maximum contractile velocity falls markedly with aging. Older adults are less capable of sustaining maximum concentric velocity during repetitive contractions. These findings suggest that velocity impairments are a possible contributor to mobility loss and falls risk among older adults. Interventions for improving contractile velocity should be pursued.  相似文献   

19.
The purpose of this study was to investigate the force-velocity response of the neuromuscular system to a variety of concentric only, stretch-shorten cycle, and ballistic bench press movements. Twenty-seven men of an athletic background (21.9 +/- 3.1 years, 89.0 +/- 12.5 kg, 86.3 +/- 13.6 kg 1 repetition maximum [1RM]) performed 4 types of bench presses, concentric only, concentric throw, rebound, and rebound throw, across loads of 30-80% 1RM. Average force output was unaffected by the technique used across all loads. Greater force output was recorded using higher loading intensities. The use of rebound was found to produce greater average velocities (12.3% higher mean across loads) and peak forces (14.1% higher mean across loads). Throw or ballistic training generated greater velocities across all loads (4.4% higher average velocity and 6.7% higher peak velocity), and acceleration-deceleration profiles provided greater movement pattern specificity. However, the movement velocities (0.69-1.68 m.s(-1)) associated with the loads used in this study did not approach actual movement velocities associated with functional performance. Suggestions were made as to how these findings may be applied to improve strength, power, and functional performance.  相似文献   

20.
The present study re-examines the 15% MVC concept, i.e. the existence of a circulatory steady-state in low intensity static contractions below 15% of maximal voluntary contraction (MVC). Mean arterial blood pressure was studied during static endurance contractions of the elbow flexor and extensor muscles at forces corresponding to 10% and 40% MVC. Mean value for endurance time at 10% MVC was significantly longer for flexion [111.3 (SD 56.1) min] than for extension [18.1 (SD 7.5) min; n = 7]. At 40% MVC the difference in mean endurance time disappeared [2.3 (SD 0.7) min for elbow flexion and 2.3 (SD 0.7) min for elbow extension]. Mean arterial blood pressure exhibited a continuous and progressive increase during the 10% MVC contractions indicating that the 15% MVC concept would not appear to be valid. The terminal blood pressure value recorded at the point of exhaustion in the 10% MVC elbow extension experiment was identical to the peak pressure attained in the 40% MVC contraction. For the elbow flexors the terminal pressor response was slightly but significantly lower at 10% MVC [122.3 (SD 10.1) mmHg, 16.3 (SD 1.4) kPa] in comparison with 40% MVC [130.4 (SD 7.4) mmHg, 17.4 (SD 1.0) kPa]. When the circulation to the muscles was arrested just prior to the cessation of the contraction, blood pressure only partly recovered and remained elevated for as long as the occlusion persisted, indicating the level of pressure-raising muscle chemoreflexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号