共查询到20条相似文献,搜索用时 0 毫秒
1.
Steroid hormones have been reported to activate various signal transducers that trigger a variety of cellular responses. Among these hormones, testosterone has been identified as an antioxidant that protects against cellular damage. Therefore, using mouse embryonic stem (ES) cells as a model system, this study evaluated the effects of dihydrotestosterone (DHT), a biologically active testosterone metabolite, on H2O2-induced apoptosis. H2O2 increased the release of lactate dehydrogenase (LDH) and DNA fragmentation but reduced the cell viability in a time-dependent manner (> or =8 h). Moreover, H2O2 decreased the level of DNA synthesis and the levels of the cell cycle regulatory proteins [cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4]. These effects of H2O2 were inhibited by a pretreatment with DHT. However, a treatment with flutamide (androgen receptor inhibitor, 10(-3) M) abolished the protective effects of DHT. This result was supported by the presence of the androgen receptor in mouse ES cells. The activity of the antioxidant enzyme, catalase, was increased by the DHT treatment but not by a co-treatment with DHT and flutamide. Using CM-H(2)DCFDA (DCF-DA) for the detection of intracellular H2O2, DHT decreased the intracellular H2O2 levels but flutamide blocked this effect. H2O2 also increased the level of p38 MAPK, JNK/SAPK, and NF-kappaB phosphorylation, which were inhibited by the DHT pretreatment. Catalase inhibited the effect of H2O2 on MAPKs and NF-kappaB. However, the flutamide treatment abolished the inhibitory effects of DHT on the H2O2-induced increase in the levels of p38 MAPK, JNK/SAPK, and NF-kappaB phosphorylation. DHT inhibited the H2O2-induced increase in caspase-3 expression and decreased the level of Bcl-2 and the cellular inhibitor of apoptosis protein (cIAP)-2. These effects were abolished by the flutamide treatment. In conclusion, DHT prevents the H2O2-induced apoptotic cell death of mouse ES cells through the activation of catalase and the downregulation of p38 MAPK, JNK/SAPK, and NF-kappaB via the androgen receptor. 相似文献
2.
3.
Narayani Ramakrishnan Ruoyan Chen David E. McClain Rolf Bünger 《Free radical research》2013,47(4):283-295
Studies were carried out to investigate the protective effects of pyruvate, a key glycolytic intermediate and α-keto-monocarboxylate, against oxidative stress-induced apoptosis. Oxidative stress was induced by treating mouse thymocytes with 25 μM hydrogen peroxide for 15 min at 37°C under 5% CO2 in air. Pre- and post-treatment of cells with 10 mM pyruvate inhibited morphological changes, internucleosomal DNA fragmentation, and translocation of phosphatidylserine to the plasma membrane surface, which are characteristic features of apoptosis. L-lactate (10 mM) and acetate (10 mM) were ineffective in inhibiting apoptosis and appeared to be toxic to the cells under similar conditions. The results suggest that pyruvate has therapeutic potential for use in the treatment of oxidative stress-induced disorders associated with increased apoptosis. 相似文献
4.
Reactive oxygen species such as hydrogen peroxide (H2O2) are involved in many cellular processes that positively and negatively regulate cell fate. H2O2, acting as an intracellular messenger, activates phosphatidylinositol-3 kinase (PI3K) and its downstream target Akt, and promotes cell survival. The aim of the current study was to understand the mechanism by which PI3K/Akt signaling promotes survival in SH-SY5Y neuroblastoma cells. We demonstrate that PI3K/Akt mediates phosphorylation of the pro-apoptotic Bcl-2 family member Bax. This phosphorylation suppresses apoptosis and promotes cell survival. Increased survival in the presence of H2O2 was blocked by LY294002, an inhibitor of PI3K activation. LY294002 prevented Bax phosphorylation and resulted in Bax translocation to the mitochondria, cytochrome c release, caspase-3 activation, and cell death. Collectively, these findings reveal a mechanism by which H2O2-induced activation of PI3K/Akt influences post-translational modification of Bax and inactivates a key component of the cell death machinery. 相似文献
5.
6.
The intestinal epithelium provides a barrier to the transport of harmful luminal molecules into the systemic circulation. A dysfunctional epithelial barrier is closely associated with the pathogenesis of a variety of intestinal and systemic disorders. We investigated here the effects of nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) on the barrier function of a human intestinal epithelial cell line, Caco-2. When treated with H(2)O(2), Caco-2 cell monolayers grown on permeable supports exhibited several remarkable features of barrier dysfunction as follows: a decrease in transepithelial electrical resistance, an increase in paracellular permeability to dextran, and a disruption of the intercellular junctional localization of the scaffolding protein ZO-1. In addition, an induction of tyrosine phosphorylation of numerous cellular proteins including ZO-1, E-cadherin, and beta-catenin, components of tight and adherens junctions, was observed. On the other hand, combined treatment of Caco-2 monolayers with H(2)O(2) and an NO donor (NOC5 or NOC12) relieved the damage to the barrier function and suppressed the protein tyrosine phosphorylation induced by H(2)O(2) alone. These results suggest that NO protects the barrier function of intestinal epithelia from oxidative stress by modulating some intracellular signaling pathways of protein tyrosine phosphorylation in epithelial cells. 相似文献
7.
8.
9.
Y H Wei Y S Chen J F Lee J Y Huang C H Lee 《Proceedings of the National Science Council, Republic of China. Part B, Life sciences》1990,14(2):61-68
The effect of ethanol intake on liver mitochondrial functions was investigated by feeding rats with a liquid isocaloric diet containing various concentrations of ethanol. We found that after feeding the liquid diet for 2 to 3 months, the body weight of rats did not show a significant difference between treated and control groups. However, the mitochondrial respiration rate decreased significantly with the increase of ethanol concentration in the diet. We found that when the rats were fed on 10.8% ethanol, the average succinate-supported State 3 respiration rate decreased from 54.5 to 44.8 nmol O2/min/mg and the glutamate-malate-supported State 3 respiration rate decreased from 38.8 to 23.6 nmol O2/min/mg as compared with the control. Interestingly, we noted that ethanol intake caused a more drastic effect on State 3 respiration than on State 4 respiration, irrespective of the substrate utilized by the mitochondria. In addition, the respiratory control and ADP/O ratios were found to decrease concomitantly with the increase of ethanol level in the diet. Moreover, we found that the effect of ethanol on both respiratory control and ADP/O ratios of liver mitochondria was more pronounced in glutamate-malate-supported respiration than succinate-supported respiration. These results clearly demonstrate that ethanol intake by the rat can cause impairment of liver mitochondrial respiration and oxidative phosphorylation, and that these effects are exerted through damage to mitochondrial membranes. 相似文献
10.
Endothelial NO synthase (eNOS) is critically modulated by kinases via the phosphorylation of its Ser(1179) (bovine) or Ser(1177) (human) residue. Reactive oxygen species such as H(2)O(2) was reported to activate Akt, leading to increased eNOS Ser(1179) phosphorylation and activity. But reactive oxygen species are also known to attenuate eNOS function in cardiovascular diseases. Prior studies showing H(2)O(2)-stimulated eNOS phosphorylation were performed on serum-starved cells, and only the short term effect of H(2)O(2) was examined. Here we found that the effects of H(2)O(2) on eNOS Ser(1179) phosphorylation and function were bidirectional. With endothelial cells cultured with serum, H(2)O(2) initially raised eNOS Ser(1179) phosphorylation and activity. However, after the peak increase at 30 min, eNOS Ser(1179) phosphorylation dramatically declined. Parallel to the alterations of eNOS Ser(1179) phosphorylation, Akt was transiently activated by H(2)O(2) and subsequently became dormant. In contrast, AMP-activated protein kinase (AMPK) was progressively activated in H(2)O(2)-treated cells. Blocking Akt activation abolished the initial rise of eNOS Ser(1179) phosphorylation after H(2)O(2) treatment. In long term H(2)O(2)-treated cells where Akt was deactivated, significant amounts of Ser(1179)-phosphorylated eNOS remained. AMPK inhibition eradicated the remaining eNOS Ser(1179) phosphorylation. Taken together, these studies revealed that Akt and AMPK orchestrated a bidirectional action on eNOS Ser(1179) phosphorylation in H(2)O(2)-treated cells. Long term H(2)O(2) exposure decreased eNOS Ser(1179) phosphorylation, and this might account for the loss of eNOS function in cardiovascular diseases where chronic oxidative injury occurs. 相似文献
11.
AMPK phosphorylation of raptor mediates a metabolic checkpoint 总被引:4,自引:0,他引:4
Gwinn DM Shackelford DB Egan DF Mihaylova MM Mery A Vasquez DS Turk BE Shaw RJ 《Molecular cell》2008,30(2):214-226
AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status. 相似文献
12.
Samartsev VN Belosludtsev KN Chezganova SA Zeldi IP 《Biochemistry. Biokhimii?a》2002,67(11):1240-1247
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed. 相似文献
13.
Cataract results from oxidative damage to the lens. The mechanism involves disruption of the redox system, membrane damage, proteolysis, protein aggregation and a loss of lens transparency. Diet has a significant impact on cataract development, but the individual dietary components responsible for this effect are not known. We show that low micromolar concentrations of the naturally-occurring flavonoid, quercetin, inhibit cataractogenesis in a rat lens organ cultured model exposed to the endogenous oxidant hydrogen peroxide. Other phenolic antioxidants, (+)epicatechin and chlorogenic acid, are much less effective. Quercetin was active both when incubated in the culture medium together with hydrogen peroxide, and was also active when the lenses were pre-treated with quercetin prior to oxidative insult. Quercetin protected the lens from calcium and sodium influx, which are early events leading to lens opacity, and this implies that the non-selective cation channel is protected by this phenolic. It did not, however, protect against formation of oxidized glutathione resulting from H2O2 treatment. The results demonstrate that quercetin helps to maintain lens transparency after an oxidative insult. The lens organ culture/hydrogen peroxide (LOCH) model is also suitable for examining the effect of other dietary antioxidants. 相似文献
14.
一氧化氮供体对过氧化氢引起的心肌细胞损伤的保护作用 总被引:7,自引:0,他引:7
关于一氧化氮(NO)对心肌细胞是否具有保护作用目前尚存在争议,为探讨NO对过氧化氢(H2O2)引起的心肌细胞损伤是否具有保护作用及其可能的机制,实验将体外培养的新生大鼠心肌细胞分为3组(1)阴性对照组(Normal组);(2)H2O2组H2O2(0.1mmol/L)与心肌细胞共育4h;(3)S-亚硝基-N-乙酰青霉胺(SNAP)+H2O2组NO供体SNAP(0.5mmol/L)处理心肌细胞10min后,加入H2O2与心肌细胞共育4 h.用流式细胞术检测心肌细胞凋亡率,心肌细胞损伤程度以心肌细胞存活率和乳酸脱氢酶(lactate dehydrogenase,LDH)活性来表示,同时检测心肌细胞超氧化物歧化酶(superoxide dismutase,SOD)活性和丙二醛(MDA)含量.通过激光共聚焦显微术检测在不同处理条件下心肌细胞胞内钙的变化.结果表明,正常心肌细胞LDH活性和细胞存活率分别为631.4±75.6 U/L和93.1±6.2%,细胞凋亡率为0;H2O2处理细胞后可使细胞LDH活性显著增高(1580.5±186.7 U/L,P<0.01),细胞存活率明显下降(58.3±7.6%,P<0.01),流式细胞仪检测到大量心肌细胞凋亡,凋亡率为26.4±5.7%;SOD活性较正常细胞19.67±0.85 NU/ml显著下降,为14.73±1.68 NU/m(P<0.01),MDA含量较正常细胞6.95±0.83μmol/L显著增高,为15.35±3.49μmol/L(P<0.01).SNAP预处理细胞可显著提高心肌细胞存活率(79.7±9.3%,P<0.01),降低LDH活性和细胞凋亡率(分别为957.8±110.9 U/L和9.1±3.3%,P<0.01);并提高细胞抗氧化能力,表现为较H2O2处理组的SOD活性增高(21.36±3.11 NU/ml,P<0.01),MDA含量下降(9.12±1.47 μmol/L,P<0.01).激光共聚焦显微镜检测结果表明,H2O2可升高细胞内钙,而SNAP则可降低细胞内钙,SNAP预处理细胞后可取消H2O2升高细胞内钙的作用.上述结果提示,NO供体SNAP可对抗H2O2对心肌细胞的损伤,其机制与提高心肌细胞抗氧化损伤能力和对抗H2O2引起的细胞内钙超载有关. 相似文献
15.
Neuroprotective effects of tetramethylpyrazine on hydrogen peroxide-induced apoptosis in PC12 cells 总被引:1,自引:0,他引:1
In the present study, we investigated the effects of tetramethylpyrazine (TMP) on hydrogen peroxide (H2O2)-induced apoptosis in PC12 cells. The apoptosis in H2O2-induced PC12 cells was accompanied by a decrease in Bcl-2/Bax protein ratio, release of cytochrome c to cytosol and the activation of caspase-3. TMP not only suppressed the down-regulation of Bcl-2, up-regulation of Bax and the release of mitochondrial cytochrome c to cytosol, but also attenuated caspase-3 activation and eventually protected against H2O2-induced apoptosis. These results indicated that TMP blocked H2O2-induced apoptosis by the regulation of Bcl-2 family members, suppression of cytochrome c release, and caspase cascade activation in PC12 cells. 相似文献
16.
17.
In this paper, we evaluate the extent to which flavonoids in red wine (catechin, epicatechin, quercetin and procyanidins) protect against hydrogen peroxide-induced oxidative stress in Fao cells. When cells were exposed to H(2)O(2), malondialdehyde (MDA) levels, oxidized glutathione (GSSG) levels and lactate dehydrogenase (LDH) release increased, indicating membrane damage and oxidative stress. All the flavonoids studied, and in particular epicatechin and quercetin, protected the plasma membrane. Only procyanidins lowered MDA levels and LDH leakage, maintained a higher reduced/oxidized glutathione ratio, and increased catalase/superoxide dismutase and glutathione peroxidase/superoxide dismutase ratios, and glutathione reductase and glutathione transferase activities. These results show that the procyanidin mixture has a greater antioxidant effect than the individual flavonoids studied, probably due to its oligomer content and/or the additive/synergistic effect of its compounds. This suggests that the mixture of flavonoids found in wine has a greater effect than individual phenols, which may explain many of the healthy effects attributed to wine. 相似文献
18.
Su CY Chong KY Edelstein K Lille S Khardori R Lai CC 《Biochemical and biophysical research communications》1999,265(2):279-284
Thermal pretreatment improves cardiac recovery from subsequent ischemia/reperfusion. Induction of heat shock proteins (hsps) may contribute to this protection. We have demonstrated that augmentation of the constitutive hsp70 (hsc70) in H9c2 heart myoblasts promotes oxidative resistance. We employed a model oxidant to explore potential target(s) of protection by hsc70. Upon exposure to 54 microM of hydrogen peroxide (H(2)O(2)), hsc70-overexpressing cells exhibited a lower lipid peroxidation than the sham-transfected control. Constitutive hsc70 overexpression, however, did not protect against H(2)O(2)-induced depletion of ATP and glutathione (GSH). Lipid protection also occurred in cells preconditioned at 39 degrees C (selectively induces hsc70) during H(2)O(2) exposure. Interestingly, the protection conferred by hsc70 was comparable in magnitude to that provided by alpha-tocopherol, and was followed with a reduced release of lactate dehydrogenase and a unaltered calcium uptake during H(2)O(2) challenge. Collectively, our observations suggest that hsc70 may preserve membrane function via attenuation of lipid peroxidation during oxidative insult. 相似文献
19.
20.
Recent studies have shown that low concentrations of H2O2 are produced endogenously by nonphagocytes after wounding. We observed that H2O2 at such concentrations can stimulate proliferation as well as migration of keratinocytes in a scratch-wound assay. Both wounding and H2O2 can induce phosphorylation of ERK1/2 via EGFR, but the activation of ERK1/2 by H2O2 is more sustained and can last more than 8 h. Sustained ERK1/2 activation is required for the increased proliferation and migration induced by H2O2. The p38 MAPK was also found to be phosphorylated upon treatment with H2O2 but it was not required for H2O2-induced migration or proliferation. Furthermore, it was observed that there is a cross talk between the ERK1/2 and the p38 pathways whereby inhibition of either pathway can lead to activation of the other. As a result, the motogenic effects of H2O2 were further enhanced when p38 was inhibited. Our data are consistent with the view that H2O2 may play an important signaling role in wound healing. 相似文献