首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that 3 week oral VOSO4 treatment of streptozotocin (STZ, 60 mg/kg)-induced diabetic rats was able to correct diabetes for 13 weeks after treatment withdrawal. In the present study, we investigated whether a short-term (8 days) i.p. VOSO4 treatment was similarly able to reverse the diabetic state. Insulin secretory capacities were assessed at distance of treatment using the isolated pancreas preparation. Seven treatment-groups were performed: high dose VOSO4-treated diabetics (HVD, 1.3 mM/kg/8 days), food-restricted diabetics (FRD, food adjusted to HVD levels), low dose VOSO4-treated diabetes (LVD, 0.06 mM/kg/day), insulin-treated diabetics (ID, dose adjusted to normalize glycaemia) and VOSO4 (0.06 mM/kg/day) + insulin (dose adjusted to normalize glycaemia in the presence of vanadium)-treated diabetics (IVD), in addition to the corresponding untreated non-diabetic controls (C) and diabetics (D). Our results indicate that long-term correction of diabetes (a) can be obtained after an 8 day treatment using i.p. VOSO4 in diabetic animals retaining some degree of pancreatic function, (b) is not obtained with insulin treatment or food restriction although the association of VOSO4 and insulin was found beneficial, (c) can be prolonged in some individuals for at least 4 months, i.e. in conditions such that tissue vanadium concentrations had returned to values close to pre-treatment levels, (d) is associated with improved and in some cases normalized insulin secretion from isolated pancreas. The protective or corrective role of VOSO4 on diabetes-related pancreatic alterations, as well as the potential of the VOSO4-insulin association should be further studied in view of the possible use of vanadium derivatives in the treatment of diabetes.  相似文献   

2.
Organic anion transporter 3 (Oat3) is a major renal Oats expressed in the basolateral membrane of renal proximal tubule cells. We have recently reported decreases in renal Oat3 function and expression in diabetic rats and these changes were recovered after insulin treatment for four weeks. However, the mechanisms by which insulin restored these changes have not been elucidated. In this study, we hypothesized that insulin signaling mediators might play a crucial role in the regulation of renal Oat3 function. Experimental diabetic rats were induced by a single intraperitoneal injection of streptozotocin (65 mg/kg). One week after injection, animals showing blood glucose above 250 mg/dL were considered to be diabetic and used for the experiment in which insulin-treated diabetic rats were subcutaneously injected daily with insulin for four weeks. Estrone sulfate (ES) uptake into renal cortical slices was examined to reflect the renal Oat3 function. The results showed that pre-incubation with insulin for 30 min (short term) stimulated [3H]ES uptake into the renal cortical slices of normal control rats. In the untreated diabetic rats, pre-incubation with insulin for 30 min failed to stimulate renal Oat3 activity. The unresponsiveness of renal Oat3 activity to insulin in the untreated diabetic rats suggests the impairment of insulin signaling. Indeed, pre-incubation with phosphoinositide 3-kinase (PI3K) and protein kinase C zeta (PKCζ) inhibitors inhibited insulin-stimulated renal Oat3 activity. In addition, the expressions of PI3K, Akt and PKCζ in the renal cortex of diabetic rats were markedly decreased. Prolonged insulin treatment in diabetic rats restored these alterations toward normal levels. Our data suggest that the decreases in both function and expression of renal Oat3 in diabetes are associated with an impairment of renal insulin-induced Akt/PKB activation through PI3K/PKCζ/Akt/PKB signaling pathway.  相似文献   

3.
This study examined the effects of a dual treatment combining insulin treatment and exercise training on basal cardiac function and signaling pathways involving β3-AR, NOS1, and RyR2 in type 1 diabetic rats. Male Wistar rats were assigned into a diabetic group receiving no treatment (D), an insulin-treated diabetic (Ins), a trained diabetic (TD), and a trained insulin-treated diabetic (TIns) group. Control group (C) was included in order to confirm the deleterious effects of diabetes. Insulin treatment and/or treadmill exercise training were conducted for 8 weeks. Basal cardiac function was evaluated by Langendorff technique. Cardiac protein expression of β3-AR, NOS1, and RyR2 was assessed using Western blots. Diabetes induced a decrease of both basal diastolic and systolic (±dP/dt) cardiac function (P < 0.05). Moreover, diabetes was associated with an increase of β3-AR and NOS1 and a decrease of RyR2 expression (P < 0.05). Although combined treatment was not able to normalize -dP/dt, it succeeded to normalize +dP/dt of diabetic rats. Combined treatment led to an overexpression of RyR2. Effects of this combined treatment on +dP/dt and RyR2 were greater than the effects of insulin and exercise training, applied solely. Treatments, applied solely or in combination, resulted in a complete normalization of β3-AR and in a down-regulation of NOS1 because this protein expression in all treated diabetic rats became lower than control values (P < 0.01). Our study shows that unlike single treatments, dual treatment combining insulin treatment and exercise training was able to normalize basal systolic function of diabetic rats by a specific regulation of β3-AR-NOS1-RyR2 signaling pathways.  相似文献   

4.
BACKGROUND: Previous studies demonstrating the efficacy of insulin gene therapy have mostly involved use of adenoviral vectors or naked DNA to deliver the insulin gene. However, this procedure may not guarantee long-term insulin production. To improve the performance, we prepared recombinant adeno-associated viral vectors (rAAV) harboring the gene encoding a furin-modified human insulin under the cytomegalovirus (CMV) promoter [rAAV-hPPI(F12)]. METHODS: Streptozotocin (STZ)-induced diabetic Sprague-Dawley rats were used as a diabetic animal model. The levels of blood glucose, insulin, and HbA1c were measured to test the effect. An intraperitoneal glucose tolerance test was performed to test the capability of blood glucose disposal. Immunohistochemical staining and Northern blot analyses were performed to survey the expression pattern of the therapeutic insulin gene. RESULTS: STZ-induced diabetic Sprague-Dawley rats infused via the portal vein with rAAV-hPPI(F12) produced human insulin and after a 6-h fast were normoglycemic for over 90 days post-treatment, whereas diabetic rats treated with recombinant adenoviral vector harboring the hPPI(F12) gene [rAV-hPPI(F12)] were normoglycemic only for days 3 to 13 post-treatment. Insulin mRNA was detected mainly in the liver of the rAAV-hPPI(F12)-treated diabetic rats. The glucose tolerance capability of the rAAV-hPPI(F12)-treated diabetic rats was comparable to that of non-diabetic rats, even without injection of recombinant insulin. Furthermore, blood HbA1c concentrations in rAAV-hPPI(F12)-treated diabetic rats were reduced to almost the normal level. Importantly, studies of rAV or rAAV vector-dependent side effects on the targeted liver strongly suggested that only rAAV treatment caused no side effects. CONCLUSIONS: These results demonstrate that our rAAV-mediated in vivo insulin gene therapy provides safer maintenance of the insulin gene expression required for long-term and thus more effective blood glycemic control.  相似文献   

5.
6.
Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p?<?0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p?<?0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p?<?0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition.  相似文献   

7.
8.
In this study, we established systemic in-vivo evidence from molecular to organism level to explain how diabetes can aggravate myocardial ischemia-reperfusion (I/R) injury and revealed the role of insulin signaling (with specific focus on Akt/GLUT4 signaling molecules). The myocardial I/R injury was induced by the left main coronary artery occlusion for 1 hr and then 3 hr reperfusion in control, streptozotocin (STZ)-induced insulinopenic diabetes, and insulin-treated diabetic rats. The diabetic rats showed a significant decrease in heart rate, and a prolonged isovolumic relaxation (tau) which lead to decrease in cardiac output (CO) without changing total peripheral resistance (TPR). The phosphorylated Akt and glucose transporter 4 (GLUT 4) protein levels were dramatically reduced in both I/R and non-I/R diabetic rat hearts. Insulin treatment in diabetes showed improvement of contractile function as well as partially increased Akt phosphorylation and GLUT 4 protein levels. In the animals subjected to I/R, the mortality rates were 25%, 65%, and 33% in the control, diabetic, and insulin-treated diabetic group respectively. The I/R-induced arrhythmias and myocardial infarction did not differ significantly between the control and the diabetic groups. Consistent with its anti-hyperglycemic effects, insulin significantly reduced I/R-induced arrhythmias but had no effect on I/R-induced infarctions. Diabetic rat with I/R exhibited the worse hemodynamic outcome, which included systolic and diastolic dysfunctions. Insulin treatment only partially improved diastolic functions and elevated P-Akt and GLUT 4 protein levels. Our results indicate that cardiac contractile dysfunction caused by a defect in insulin-stimulated Akt/GLUT4 may be a major reason for the high mortality rate in I/R injured diabetic rats.  相似文献   

9.
The effect of treatment with vanadate on the metabolism of bile acids was studied in normal and diabetic rats. In the normal rats, the composition of biliary bile acids was not changed by drinking an aqueous solution of 0.2 g/l NaVO3-5 g/l NaCl ad libitum for two weeks. By contrast, the increased proportion of cholic acid, accounting for 88% of the total biliary bile acids, in the diabetic rats decreased to 46% by the treatment with vanadate without any elevation of serum insulin level. These results indicate that vanadate with an insulin-like effect on glucose metabolism in diabetic rats has such an effect also on bile acid metabolism in an insulin-deficient state.  相似文献   

10.
Pancreatic islets were isolated from the fetuses of normal rats and rats made diabetic by the iv administration of streptozotocin (STZ) on either Day 3 or 5 of pregnancy. Of the rats made diabetic on Day 3, one group also received insulin injections at the appearance of glucosuria. Maternal blood glucose on Day 20 of gestation was significantly different in the diabetic rats (405 +/- 27 mg/dl) from the normal (97 +/- 1 mg/dl) and insulin-treated diabetic rats (69 +/- 9 mg/dl). While fetal weight was significantly decreased in the STZ-treated rats (2.64 +/- 0.13 g vs 3.52 +/- 0.05 g for the control group, P less than 0.005), fetal glucose was significantly higher in the STZ-treated than in normal pups (342 +/- 11 vs 35 +/- 1 mg/dl, P less than 0.005). Both fetal weight and glucose were normalized by insulin treatment: 3.16 +/- 0.18 g and 31 +/- 7 mg/dl, respectively. Insulin release from fetal islets of diabetic dams was blunted after a week in culture both in basal and stimulated conditions. After 2 weeks in culture, there was partial recovery in the insulin response to glucose but it did not equal to that measured in fetal islets from the normal and insulin-treated diabetic rats. These data suggest maternal hyperglycemia severely impairs fetal weight and insulin release from fetal rat islets in vitro, and correction of the hyperglycemia by insulin treatment not only improves fetal weight and glucose concentrations, but it also normalizes insulin release from fetal rat islets in vitro.  相似文献   

11.
Sodium metavanadate was tested for its effects on fetal development, reproduction, gestation and lactation in Sprague Dawley rats. Male rats were administered NaVO3 po at doses of 0, 5, 10 and 20 mg/kg/day for sixty days before mating with females which had received the same doses from 14 days previous to mating. These females received 0, 5, 10 and 20 mg NaVO3/kg/day during the periods of gestation and lactation. No significant adverse effects could be observed on: number of corpora lutea, implantations, live and dead fetuses, and resorptions. Significant decreases were observed in the development of the pups in all the vanadium -treated groups. All the doses used produced toxic effects in the offspring.  相似文献   

12.
A comparison of the processes controlling the increase in hepatic malic enzyme activity in insulin-treated normal and diabetic rats indicated the existence of two distinct regulatory mechanisms. Livers were removed at 12, 36, and 60 h after insulin treatment of normal and alloxan-diabetic rats, and the activity, quantity, and specific activity (units/nmol), of malic enzyme was determined. In normal rats, a significant increase in activity occurred 12 h after insulin, whereas 36 h of insulin treatment was required for diabetic rats to show an increase in enzyme activity. This suggested that the return of malic enzyme activity from the depleted levels measured in diabetic rats probably involved a different sequence of events. A malic enzyme specific radioimmunoassay confirmed this. The increase in activity in insulin-treated normal rats was due to an increase in the quantity of malic enzyme. In insulin-treated diabetic rats, the increase in activity resulted from increases in both enzyme quantity and the specific activity of the enzyme, which returned to levels observed in normal rats.  相似文献   

13.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated controls). The ACh-induced nitrite plus nitrate (NOx) level showed no significant difference between controls and diabetics. Insulin treatment increased NOx only in diabetics. In diabetics, insulin treatment significantly increased the aortic expressions of endothelial nitric oxide synthase (eNOS) mRNA and VEGF mRNA. The expression of IGF-1 mRNA was unaffected by diabetes or by insulin treatment. In contrast, the mRNA for the aortic IGF-1 receptor was increased in diabetics and further increased in insulin-treated diabetics. In aortic strips from age-matched control rats, IGF-1 caused a concentration-dependent relaxation. This relaxation was significantly stronger in strips from STZ-induced diabetic rats. These results suggest that in STZ-diabetic rats, short-term insulin treatment can ameliorate endothelial dysfunction by inducing overexpression of eNOS and/or VEGF mRNAs possibly via IGF-1 receptors. These receptors were increased in diabetes, perhaps as result of insulin deficiency.  相似文献   

14.
In vivo effects of insulin and vanadium treatment on glycogen synthase (GS), glycogen synthase kinase-3 (GSK-3) and protein phosphatase-1 (PP1) activity were determined in Wistar rats with streptozotocin (STZ)-induced diabetes. The skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). Diabetes, vanadium, and insulin in vivo treatment did not affect muscle GSK-3 activity as compared to controls. Following insulin stimulation in 4-week STZ-diabetic rats muscle GS fractional activity (GSFA) was increased 3 fold (p < 0.05), while in 7-week diabetic rats it remained unchanged, suggesting development of insulin resistance in longer term diabetes. Muscle PP1 activity was increased in diabetic rats and returned to normal after vanadium treatment, while muscle GSFA remained unchanged. Therefore, it is possible that PP1 is involved in the regulation of some other cellular events of vanadium (other than regulation of glycogen synthesis). The lack of effect of vanadium treatment in stimulating glycogen synthesis in skeletal muscle suggests the involvement of other metabolic pathways in the observed glucoregulatory effect of vanadium.  相似文献   

15.
The effect of thyroxine (T4) on T4 conversion to triiodothyronine (T3) and reverse T3 (rT3) was studied in BB/W rats. A colony of 38 BB/W rats was obtained and half were treated with thyroxine (T4), 1 mg per liter of drinking water. At 106 days of age the following groups were identified: nondiabetic, no T4 treatment, 8 rats; nondiabetic, T4 treated, 8 rats; diabetic, no T4 treatment, 10 rats; diabetic, T4 treated, 7 rats. All animals with diabetes were treated with insulin. T4 conversion to T3 and rT3 was assessed in liver homogenates in 0.1 M Tris-HCl buffer, pH 7.4, with or without 5 mM dithiothreitol (DDT). Serum T4 and rT3 were significantly elevated in both T4-treated groups (P less than 0.001), while serum T3 was not affected in either. Basal T4 deiodination to T3 by the liver homogenate did not change on treatment with T4; the addition of DTT increased T3 production in the homogenate from T4 treated nondiabetic animals (P less than 0.05). In both nondiabetic and insulin-treated diabetic rats there was no effect of T4 on the rate of rT3 production. Since, in the rat, 30-40% of circulating T3 is a direct contribution of thyroid gland secretion, and that would be absent in our T4-suppressed animals, the normal serum T3 may reflect increased absolute peripheral T3 production from the greater concentration of circulating T4.  相似文献   

16.
The objective of this study was to determine whether a gender difference exists in myosin heavy chain (MHC) isoform or sarcoplasmic reticulum protein levels in diabetic rat hearts. As is the case with normal rodent hearts, all four chambers of the control rat hearts expressed almost 100% MHC-alpha. In 6-wk diabetic rats, MHC-beta expression in ventricles of males was significantly greater (78 +/- 7%) than in females (50 +/- 5%). The cardiac sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) protein level was decreased and the phospholamban (PLB) protein level was increased in the left ventricle of diabetic rats, but there was no difference between male and female diabetic rats. The phosphorylated PLB level was decreased more in male than in female diabetic rats. Insulin treatment completely normalized blood glucose level, cardiac SERCA2a and PLB protein levels, and the decrease in MHC-beta levels in both male and female diabetic rats. Insulin treatment completely normalized serum insulin and almost completely normalized phosphorylation of PLB at serine 16 in male diabetic rats. Although insulin treatment completely normalized serum insulin levels in male diabetic rats, in females it only partially normalized serum insulin levels. Also, insulin treatment almost completely normalized phosphorylation of PLB at threonine 17 in female diabetic rats; however, the increase was significantly greater than that identified for insulin-treated male diabetic rats. We conclude that higher levels of MHC-beta and dephosphorylated PLB may contribute to more contractile dysfunction in male than in female diabetic rat hearts, and that phosphorylation of PLB at threonine 17 is more responsive to insulin in female diabetic rat hearts.  相似文献   

17.
Oztürk Y  Aydin S 《Life sciences》2006,78(10):1084-1090
In the present study, effects of streptozotocin-induced diabetes and insulin treatment on the reactivity of rat vas deferens to KCl and calmidazolium, a calmodulin antagonist, were evaluated and calmodulin levels in vas deferens tissue from diabetic and insulin-treated rats were determined. Diabetes was induced in rats by a single injection of streptozotocin. Five weeks after the induction of diabetes, one group of diabetic rats was injected with insulin for 3 weeks. After 8 weeks, vas deferens tissues on one side of diabetic and insulin-treated diabetic rats and their controls were mounted in organ bath to measure isometric tension, while the tissues on the other side of rats were homogenized to determine calmodulin levels by radioimmunoassay. Concentration-response curves to KCl were obtained in vas deferens tissues in the absence and presence of calmidazolium. The effects of KCl and calmidazolium on vas deferens isolated from 8-weeks diabetic rats were decreased. Calmodulin levels were also found to be decreased in vas deferens from diabetic rats. Decreased calmodulin levels in diabetic rat vas deferens were not corrected by insulin treatment. Only a partial correction following insulin treatment was observed in contractile effect of KCl on diabetic rat vas deferens, whereas insulin treatment increases the affinity of calmodulin in this muscle. Experimental diabetes causes an impairment in calcium/calmodulin-dependent contractile process of vas deferens, which is correctable partially following insulin therapy. The changes in the function of rat vas deferens due to streptozotocin diabetes seem to be related to impaired sexual functions in human diabetes.  相似文献   

18.
The effect of vanadium treatment on insulin-stimulated glucose transporter type 4 (GLUT4) translocation was studied in cardiac tissue of streptozotocin (STZ)-induced diabetic rats by determining the subcellular distribution of GLUT4. Four groups of rats were examined: control and diabetic, with or without bis(maltolato)oxovanadium(IV) (BMOV, an organic form of vanadium) treatment for 8 weeks. The effect of vanadium on insulin-induced GLUT4 translocation was studied at 5 min as the early insulin response and at 15 min after insulin injection as the maximal insulin response.At 5 min after insulin injection, plasma membrane GLUT4 level in the diabetic-treated group was not different from the control groups and was significantly higher than that of the insulin-stimulated diabetic group, indicating an enhancement of insulin response on GLUT4 translocation brought about by vanadium treatment. In contrast to that at 5 min after insulin injection, no significant difference in the plasma membrane GLUT4 level was observed between the diabetic and the diabetic-treated groups at 15 min after insulin injection. GLUT4 mobilization from the intracellular pool in response to insulin was also investigated at 15 min after insulin injection. Basal intracellular GLUT4 content was significantly higher in the diabetic-treated group when compared to the diabetic group under the same condition. However, the increased basal intracellular GLUT4 in the diabetic-treated group did not result in more insulin-mediated GLUT4 translocation at 15 min after insulin injection. In conclusion, the finding that plasma membrane GLUT4 in the diabetic-treated group is significantly higher than that of the diabetic group at 5 min but not at 15 min post-insulin injection indicates that vanadium treatment enhances insulin-mediated GLUT4 translocation in cardiac tissue by enhancing its early response.  相似文献   

19.
The contribution of poor metabolic control to myocardial ischemic failure was determined in isolated working hearts from insulin-dependent BB Wistar rats. Removal of insulin treatment 24 h prior to study (uncontrolled diabetic rats) resulted in significant increases in serum glucose, serum fatty acids, and myocardial triglyceride, compared with animals in which insulin treatment was not withheld (insulin-treated diabetic rats). Isolated working hearts obtained from these two groups were subjected to a 40% reduction in coronary flow in the presence of a maintained metabolic demand (hearts were paced at 200 beats/min and perfused at an 80 mmHg (1 mmHg = 133.3 Pa) left aortic afterload, 11.5 mmHg left atrial preload). Within 15 min of ischemia, a significant deterioration of mechanical function occurred in the uncontrolled diabetic rats, whereas function was maintained in the insulin-treated diabetic rats. Oxygen consumption by the two groups of hearts was similar prior to the onset of ischemia and decreased during ischemia in parallel with the work performed by the hearts. This suggests that the accelerated failure rate in uncontrolled diabetic rat hearts is unlikely a result of an increased oxygen requirement. These data are a direct demonstration that acute changes in metabolic control of the diabetic can contribute to the severity of myocardial ischemic injury.  相似文献   

20.
Vanadium has been reported to have insulin-like properties and has recently been demonstrated to be beneficial in the treatment of diabetic animals. In the present study, concentration dependence of the therapeutic effects of vanadium and the nature of interaction under in vivo conditions between vanadium and insulin were examined in streptozotocin-diabetic rats. During a 2-week period, blood glucose levels in all treated animals were decreased. At higher concentrations of vanadyl this decrease was greater and more rapid, and remained consistently lower for the entire treatment period. Daily intake of vanadyl, however, reached a similar steady state in all groups. Acute administration of submaximal doses of insulin, which had minimal effects in untreated diabetic rats, lowered blood glucose concentrations in vanadyl-treated and vanadyl-withdrawn animals to control levels. Chronic treatment of streptozotocin-diabetic rats with submaximal levels of vanadyl and insulin, ineffective alone, also produced significant decreases in blood glucose levels when used in combination. Finally, the insulin dosage required to maintain a nonglycosuric state in spontaneously diabetic (BB) rats was reduced in the presence of vanadyl. These studies indicate that chronic oral vanadyl treatment (a) produces a concentration-related lowering of blood glucose in diabetic rats, (b) potentiates the in vivo glucose lowering effects of acute and chronic administrations of insulin in streptozotocin-diabetic rats, and (c) substitutes for, or potentiates, the effects of chronic insulin therapy in spontaneously diabetic BB rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号