首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Select members of the TGF-beta family of cytokines play key regulatory roles in skeletal development, structure, and turnover. This laboratory has previously reported that TGF-beta treatment of immortalized normal human fetal osteoblast (hFOB) cells results in the rapid induction of the mRNA levels of a TGF-beta inducible early gene (TIEG) followed by changes in cell proliferation and bone matrix protein production. Previous studies have also shown that nonmembers of the TGF-beta superfamily showed little or no induction of TIEG mRNA. This article further addresses the cytokine specificity of this TIEG induction by examining whether activin and select bone morphogenetic proteins, (BMP-2, BMP-4, and BMP-6), which are representative of different subfamilies of this superfamily, also induce the expression of TIEG in hFOB cells. However, TGF-beta remained the most potent of these cytokines, inducing TIEG mRNA steady-state levels at 0.1 ng/ml, with a maximum induction of 24-fold at 2.0 ng/ml. The BMP-2 (16-fold), BMP-4 (4-fold), and activin (1-3-fold) also induced TIEG mRNA levels, but at reduced degrees compared to TGF-beta (24-fold), and only at much higher cytokine concentrations, e.g., 50-100 ng/ml, compared to 2 ng/ml for TGF-beta. BMP-6 showed no effect on TIEG mRNA levels. The TIEG protein levels generally correlated with the mRNA steady-state levels. As with TGF-beta, BMP-2 treatment of hFOB cells was shown by confocal microscopy to induce a rapid translocation of the TIEG protein to the nucleus. In summary, the relative potencies of these TGF-beta family members to induce TIEG expression generally follows the general osteoinductive capacity of these cytokines, with TGF-beta > BMP-2 > BMP-4 > activin > BMP-6.  相似文献   

2.
3.
4.
5.
6.
Collagen has been reported to be essential for the proliferation of various kinds of cells including human osteoblastic cells [Takamizawa, S., Maehata, Y., Imai, K., Senoo, H., Sato, S., Hata, R., 2004. Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol. Int. 28, 255-265], but the type(s) of collagen responsible for growth regulation is not known. Presently we found that ascorbic acid 2-phosphate, a long-acting vitamin C derivative, stimulated both cell growth and the expression of mRNA for type III collagen in human osteoblast-like MG-63 cells and in normal human osteoblasts, as well as in human bone marrow mesenchymal stem cells, but not the expression of type I collagen in these cells. Epidermal growth factor also stimulated both cell growth and expression of type III collagen mRNA in MG-63 cells. Among MG-63 cell clones, their growth rates correlated significantly with their COL3A1 messenger RNA levels but not with their COL1A1 or COL1A2 messenger RNA levels. Transfection of MG-63 cells with siRNA for COL3A1 but not with that for COL1A1 decreased the growth rates of the transfected cells concomitant with a drop in the level of COL3A1 mRNA. Furthermore, cell proliferation as observed by thymidine incorporation into DNA and cell number was increased when MG-63 cells were cultured on type III collagen-coated dishes. Taken together, our results indicate that type III collagen is the collagen component responsible for the growth stimulation of human osteoblastic cells.  相似文献   

7.
Transforming growth factor-beta (TGF-beta) induces a marked decrease in adhesion of MG-63 human osteosarcoma cells to laminin-coated surfaces, but does not significantly alter adhesion to fibronectin- or collagen-coated surfaces. We provide evidence that this effect is due to a switch in the repertoire of cell adhesion receptors in response to TGF-beta. MG-63 cells express high levels of alpha 3 beta 1-integrin, which is a polyspecific laminin/collagen/fibronectin receptor, and low levels of alpha 2 beta 1- and alpha 5 beta 1-integrins, which are collagen and fibronectin receptors, respectively. No other integrins of the beta 1-class could be detected in MG-63 cells. Treatment with TGF-beta 1 induces a marked (approximately 60%) decrease in the level of expression of alpha 3-integrin subunit mRNA and protein and a concomitant 8-fold increase in alpha 2-subunit expression. These responses become maximal 7-12 h after addition of TGF-beta 1 to the cells. Expression of alpha 5- and beta 1-integrin subunits also increases in response to TGF-beta 1, but to a lesser extent than alpha 2-subunit expression. Thus, as a result of TGF-beta action, the alpha 2 beta 1-collagen and alpha 5 beta 1-fibronectin receptors replace the alpha 3 beta 1-laminin/collagen/fibronectin receptor as the predominant integrins of the beta 1-class in MG-63 cells. These results suggest that one of the effects of TGF-beta is to modify the adhesive behavior of certain tumor cells by changing the binding specificity of the complement of integrins that they express.  相似文献   

8.
Mutations and/or deletions of Pkd1 in mouse models resulted in attenuation of osteoblast function and defective bone formation; however, the function of PKD1 in human osteoblast and bone remains uncertain. In the current study, we used lentivirus-mediated shRNA technology to stably knock down PKD1 in the human osteoblastic MG-63 cell line and to investigate the role of PKD1 on human osteoblast function and molecular mechanisms. We found that a 53% reduction of PKD1 by PKD1 shRNA in stable, transfected MG-63 cells resulted in increased cell proliferation and impaired osteoblastic differentiation as reflected by increased BrdU incorporation, decreased alkaline phosphatase activity, and calcium deposition and by decreased expression of RUNX2 and OSTERIX compared to control shRNA MG-63 cells. In addition, knockdown of PKD1 mRNA caused enhanced adipogenesis in stable PKD1 shRNA MG-63 cells as evidenced by elevated lipid accumulation and increased expression of adipocyte-related markers such as PPARγ and aP2. The stable PKD1 shRNA MG-63 cells exhibited lower basal intracellular calcium, which led to attenuated cytosolic calcium signaling in response to fluid flow shear stress, as well as increased intracellular cAMP messages in response to forskolin (10 μM) stimulation. Moreover, increased cell proliferation, inhibited osteoblastic differentiation, and osteogenic and adipogenic gene markers were significantly reversed in stable PKD1 shRNA MG-63 cells when treated with H89 (1 μM), an inhibitor of PKA. These findings suggest that downregulation of PKD1 in human MG-63 cells resulted in defective osteoblast function via intracellular calcium-cAMP/PKA signaling pathway.  相似文献   

9.
The role of glomerular endothelial cells in kidney fibrosis remains incompletely understood. While endothelia are indispensable for repair of acute damage, they can produce extracellular matrix proteins and profibrogenic cytokines that promote fibrogenesis. We used a murine cell line with all features of glomerular endothelial cells (glEND.2), which dissected the effects of vascular endothelial growth factor (VEGF) on cell migration, proliferation, and profibrogenic cytokine production. VEGF dose-dependently induced glEND.2 cell migration and proliferation, accompanied by up-regulation of VEGFR-2 phosphorylation and mRNA expression. VEGF induced a profibrogenic gene expression profile, including up-regulation of TGF-beta1 mRNA, enhanced TGF-beta1 secretion, and bioactivity. VEGF-induced endothelial cell migration and TGF-beta1 induction were mediated by the phosphatidyl-inositol-3 kinase pathway, while proliferation was dependent on the Erk1/2 MAP kinase pathway. This suggests that differential modulation of glomerular angiogenesis by selective inhibition of the two identified VEGF-induced signaling pathways could be a therapeutic approach to treat kidney fibrosis.  相似文献   

10.
Zhong Q  Ding KH  Mulloy AL  Bollag RJ  Isales CM 《Peptides》2003,24(4):611-616
Glucose-dependent insulinotropic peptide (GIP) is known to modulate alkaline phosphatase activity and collagen type I message in osteoblastic-like cells. GIP effects on cell proliferation are not known. We report that GIP dose dependently stimulated 3H-thymidine incorporation in the osteoblastic-like cell line MG-63. Furthermore, GIP increased message and secretion of transforming growth factor beta (TGF-beta), an agent known to regulate osteoblastic proliferation and differentiation. However, when GIP was added to MG-63 cells concurrently with a TGF-beta neutralizing antibody, there was no effect on 3H-thymidine incorporation in these cells. These data demonstrate that GIP stimulates osteoblastic-like cell proliferation but that this effect is not mediated by TGF-beta.  相似文献   

11.
12.
The interaction of osteoblasts and endothelial cells plays a pivotal role in osteogenesis. This interaction has been extensively studied using their direct co-culture in vitro. However, co-culture experiments require clear discrimination between the two different cell types in the mixture, but this was rarely achieved. This study is the first to use fluorescence-activated cell sorting (FACS) for the separation and quantitative analysis of the proliferation and differentiation of MG-63 cells grown in direct co-culture with human umbilical vein endothelial cells (HUVECs). The cells of the MG-63 cell line have properties consistent with the characteristics of normal osteoblasts. We labeled HUVECs with fluorescent antibody against CD31 and used FACS to measure the proportions of each cell type and to separate them based on their different fluorescence intensities. The rate of proliferation of the MG-63 cells was estimated based on a count of the total viable cells and the proportion of MG-63 cells in the mixture. The mRNA expression levels of the osteoblast differentiation markers alkaline phosphatase (ALP), collagen type 1 (Coll-1) and osteocalcin (OC) in the MG-63 cells were measured via real-time PCR after the separation via FACS. We found that HUVECs stimulated the proliferation of the MG-63 cells after 72 h of co-culture, and inhibited it after 120 h of co-culture. The mRNA expression levels of ALP and Coll-1 significantly increased, whereas that of OC significantly decreased in MG-63 after co-culture with HUVECs. Using FACS for the quantitative analysis of the proliferation and differentiation of osteoblasts directly interacting with endothelial cells could have merit for further co-culture research.  相似文献   

13.
14.
SASH1, a member of the SLY-family of signal adapter proteins, is a candidate tumor suppressor in breast and colon cancer. The SASH1 protein possesses both the SH3 and SAM domains, indicating that it may play an important role in intracellular signal transduction. Reduced expression of SASH1 is closely related to tumor growth, invasion, metastasis, and poor prognosis. However, the biological role of SASH1 remains unknown in osteosarcoma. To unravel the function of SASH1, we explored the expression of SASH1 in osteosarcoma tissues and its correlation to the clinical pathology of osteosarcoma and analyzed the relationship between SASH1 expression and cell cycle, apoptosis and invasion of osteosarcoma MG-63 cells, using the flow cytometry analysis and transwell invasion chamber experiments. Furthermore, the effect of SASH1 on the expression of cyclin D1, caspase-3, matrix metalloproteinase (MMP)-9 were observed by western blot. Our results showed that the expression rate of SASH1 mRNA in osteosarcoma tissues was significantly lower than that in normal bone tissue (p = 0.000), that the expression rate of SASH1 mRNA in the carcinoma tissues from patients with lung metastasis was significantly lower than that from patients without lung metastasis (p = 0.041), and that the expression rate of SASH1 mRNA also decreased with increasing Enneking stage (p = 0.032). However, the mRNA expression of SASH1 in osteosarcoma was independent of the patient’s gender, age, and tumor size (p = 0.983, 0.343, 0.517, respectively). The SASH1 protein displayed a down-regulation in osteosarcoma tissues compared to normal bone tissue (p = 0.000), displayed a down-regulation in osteosarcoma tissues from patients with lung metastasis compared to from patients without lung metastasis (p = 0.000), and displayed a gradual decrease with increasing Enneking stage (p = 0.000). In addition, the MG-63 cells from pcDNA3.1-SASH1 group exhibited significantly reduced cell viability, proliferation, and invasive ability compared to the empty vector group and blank control group (p = 0.023, 0.001, respectively), and there was no difference between the empty vector group and blank control group. The pcDNA3.1-SASH1 group displayed significantly more apoptotic cells than the empty vector group and blank control group (p = 0.004). The expression of cyclin D1, MMP-9 displayed a down-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000, 0.001, respectively) and the expression levels of caspase-3 displayed an up-regulation in MG-63 cells from pcDNA3.1-SASH1 group compared to the empty vector group and blank control group (p = 0.000). Taken together, these data indicated that the overexpression of SASH1 might be associated with the inhibition of growth, proliferation, and invasion of MG-63 cells and the promotion of apoptosis of MG-63 cells.  相似文献   

15.
16.
17.
18.
19.
摘要 目的:研究白藜芦醇(RES)通过蛋白酪氨酸激酶2/信号转导子与激活子3(JAK2/STAT3)信号通路对人骨肉瘤体外细胞株MG-63细胞凋亡、侵袭和迁移的影响。方法:体外培养MG-63细胞,以不同浓度的RES作用于MG-63细胞。Annexin V-FITC/PI双染流式细胞术检测不同时间和不同浓度的RES对MG-63细胞凋亡的影响。划痕实验和Transwell实验检测不同时间和不同浓度的RES对MG-63细胞侵袭和迁移能力的影响。免疫印迹实验检测不同时间和不同浓度的RES对MG-63细胞磷酸化蛋白酪氨酸激酶2(p-JAK2)、磷酸化信号转导子与激活子3(p-STAT3)、凋亡相关蛋白B淋巴细胞瘤-2(Bcl-2)、Bcl-2家族促凋亡蛋白(Bax)及基质金属蛋白酶(MMP)-2、MMP-9表达的影响。结果:RES浓度越高,时间越久,MG-63细胞凋亡率越高(P<0.05)。RES浓度越高,MG-63细胞迁移和侵袭能力越弱(P<0.05)。RES处理MG-63细胞后其p-JAK2、p-STAT3、Bcl-2以及MMP-2、MMP-9的表达明显降低,而Bax蛋白表达明显升高,且p-JAK2、p-STAT3、Bax、Bcl-2以及MMP-2、MMP-9的表达水平变化具有RES浓度依赖性(P<0.05)。结论:RES可能通过调控JAK2/STAT3信号通路促使人骨肉瘤MG-63细胞凋亡,并抑制MG-63细胞侵袭和迁移。  相似文献   

20.
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional, potent anti-inflammatory cytokine produced by many cell types that regulates cell proliferation, apoptosis, and immune responses. Toll-like receptors (TLRs) recognize various pathogen-associated molecular patterns and are therefore a pivotal component of the innate immune system. In this study we show that TGF-beta1 blocks the NF-kappaB activation and cytokine release that is stimulated by ligands for TLRs 2, 4, and 5. We further show that TGF-beta1 can specifically interfere with TLR2, -4, or -5 ligand-induced responses involving the adaptor molecule MyD88 (myeloid differentiation factor 88) but not the TRAM/TRIF signaling pathway by decreasing MyD88 protein levels in a dose- and time-dependent manner without altering its mRNA expression. The proteasome inhibitor epoxomicin abolished the MyD88 degradation induced by TGF-beta1. Furthermore, TGF-beta1 resulted in ubiquitination of MyD88 protein, suggesting that TGF-beta1 facilitates ubiquitination and proteasomal degradation of MyD88 and thereby attenuates MyD88-dependent signaling by decreasing cellular levels of MyD88 protein. These findings importantly contribute to our understanding of molecular mechanisms mediating anti-inflammatory modulation of immune responses by TGF-beta1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号