首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.  相似文献   

2.
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.  相似文献   

3.
大气氮沉降对中亚草地生态系统净初级生产力的影响   总被引:1,自引:0,他引:1  
氮沉降作为除气候变化、CO2浓度升高以及土地利用变化之外的第四大主要影响陆地生态系统结构和功能的因素,其对碳循环过程的影响研究相对薄弱,同时也是不确定性最大的环节之一。近年来,由于长期高强度的放牧导致草地生态系统的生产力降低,氮成为典型草地植物生长和生态系统净初级生产力的主要限制因子。据研究,亚洲的氮沉降平均增速极有可能高于全球氮沉降平均增速,成为未来氮沉降增加最快的区域。在此背景下,研究大气氮沉降对于中亚草地生态系统的影响具有重要的意义。利用反硝化-分解模型(DNDC)分析1979-2014年中亚地区草地生态系统净初级生产力(NPP)的时空分异,探讨氮沉降对草地NPP影响。结果表明:(1)1979-2014年间,中亚地区平均草地NPP约为(173.10±31.80) g C m-2 a-1,草地NPP时空分异明显,各草地类型的NPP从大到小依次为森林草甸、温带草原和荒漠草原,并且草地NPP以(2.67±1.30) g C m-2 a-1的速度逐年增长;(2)当前氮沉降情景总体上促进了中亚地区草地NPP的增长,1979-2014年氮沉降使得中亚草地NPP增加了0.42 Pg C。  相似文献   

4.
一次性施肥技术是指在作物根际附近只进行一次基施肥的新技术,具有简化施肥管理、降低劳动成本等优点,但其对环境的影响如氮素淋失等仍需进一步分析.本研究以长江中下游地区典型的水稻-油菜轮作模式为例,设置了空白对照(CK)、农民习惯施肥(FP)、优化施肥(OPT)、一次性基施尿素(UA)、一次性基施控释肥(CRF)5个处理,采用地下淋溶原位监测的方法,获取了不同处理下水稻-油菜轮作系统土壤90 cm深度处氮素(N)淋失特征,评估了一次性施肥技术对氮素淋失的影响,并综合分析了其经济效应.结果表明: 油菜季和水稻季土壤渗漏液中氮素的主要形态不同,油菜季渗漏液中以NO3--N为主,水稻季渗漏水中NO3--N和NH4+-N各占约50%.从整个轮作周期看,氮素淋失主要发生在水稻季,与FP、OPT和UA相比,CRF氮淋失总量分别显著减少33.7%、20.8%和20.7%;但各施肥处理对油菜季氮素淋失影响不显著.在相同施氮量的条件下,与OPT相比,UA不仅保证油菜和水稻均稳产,而且使油菜季氮肥农学效率显著提高了15.1%,但是没能提高水稻季氮肥农学效率;CRF水稻产量和氮肥农学效率均差异不显著,但油菜产量和氮肥农学效率分别显著提高10.7%和18.9%.经济效益上,与OPT相比,UA和CRF处理油菜分别增收3660和3048 元·hm-2,水稻分别增收3162和2220元·hm-2.因此,对于长江中下游典型种植系统而言,综合考虑对氮素淋失、作物产量和经济效益的影响,一次性基施控释肥技术能在保证作物稳产或增产、提高农民经济效益的同时显著降低氮淋失量,是未来水稻-油菜轮作系统值得推荐的一种生产技术.  相似文献   

5.
The demand for more food is increasing fertilizer and land use, and the demand for more energy is increasing fossil fuel combustion, leading to enhanced losses of reactive nitrogen (Nr) to the environment. Many thresholds for human and ecosystem health have been exceeded owing to Nr pollution, including those for drinking water (nitrates), air quality (smog, particulate matter, ground-level ozone), freshwater eutrophication, biodiversity loss, stratospheric ozone depletion, climate change and coastal ecosystems (dead zones). Each of these environmental effects can be magnified by the ‘nitrogen cascade’: a single atom of Nr can trigger a cascade of negative environmental impacts in sequence. Here, we provide an overview of the impact of Nr on the environment and human health, including an assessment of the magnitude of different environmental problems, and the relative importance of Nr as a contributor to each problem. In some cases, Nr loss to the environment is the key driver of effects (e.g. terrestrial and coastal eutrophication, nitrous oxide emissions), whereas in some other situations nitrogen represents a key contributor exacerbating a wider problem (e.g. freshwater pollution, biodiversity loss). In this way, the central role of nitrogen can remain hidden, even though it actually underpins many trans-boundary pollution problems.  相似文献   

6.
7.

Aim

To project the impact of climate change on dragonfly and damselfly diversity in West and Central Asia.

Location

West and Central Asia.

Time period

1900–2020 data used to predict distributions in 2070 and 2100.

Taxon studied

Odonata.

Methods

Based on 149,001 records, distribution models were created for 159 species using MaxEnt. Environmental variables consisted of climate variables taken from BIOCLIM, river data and soil data. The future climate data were obtained from CHELSA from CMIP6 climate models. The same variables were collected for three scenarios (SSP1-2.6, SSP3-7.0 and SSP5-8.5) of shared socioeconomic pathways for the years 2050–2070 and 2080–2100. For each scenario and period, diversity maps were prepared for six species groups: all species, Lentic, Lotic, Oriental, Afrotropical and Palaearctic species.

Results

Strong declines in diversity are expected in western Turkey, the Levant and Azerbaijan, and to a lesser extent in parts of Iran and southern Central Asia. An increase is expected in eastern Turkey and at higher elevations in Central Asia with a limited increase throughout the Arabian Peninsula. In contrast to expectations, a decrease in areas with <15 species was found. Faunal composition is predicted to show strong shifts, with Palaearctic species declining and Oriental and Afrotropical species increasing. No clear difference between the trend of lentic and lotic species is found, although there are clear spatial differences in trend between these groups.

Main Conclusions

Climate change will result in strong changes in diversity and distribution of dragonflies and damselflies in West and Central Asia with regional declines and increases. None of the species are predicted to go extinct based on the impact of climate change only, however, the combined impact of climate change and anthropogenic forces is likely to push some of the species to near extinction by 2100.  相似文献   

8.
全球降水格局变化下土壤氮循环研究进展   总被引:2,自引:1,他引:2  
陈琳  曾冀  李华  刘士玲  雷丽群  刘世荣 《生态学报》2020,40(20):7543-7551
自然和人为因素导致全球降水格局发生改变,降水变化势必影响土壤氮循环,从而影响陆地生态系统生产力和多样性,然而不同降水变化类型对土壤氮循环的影响仍然缺乏足够的认识。因此,本文综合分析了全球和我国降水格局变化特征,简要介绍了6种降水格局变化下土壤氮循环的研究方法(长期降水固定观测、野外降水控制实验、自然降水梯度、室内培养、模型和遥感),系统综述了3种降水变化类型(降水波动、干旱、干湿交替),以及降水与温度、氮沉降等交互作用对土壤氮循环影响的研究进展与存在的问题,并展望了未来研究方向,为评估和预测未来降水变化对陆地生态系统功能的影响提供理论依据。  相似文献   

9.
Fife  D. N.  Nambiar  E. K. S. 《Plant and Soil》1995,(1):279-285
The effect of nitrogen fertilisation on growth, foliar nutrients and water relations of four families of radiata pine (Pinus radiata, D. Don) currently in the Australian breeding program was examined from age six to 11 years. At this stage, the stand was ready for commercial thinning. The annual rainfall at the site varied from 563 to 733 mm.Application of nitrogen fertiliser resulted in stem wood volume at age nine years of 178 m3 ha-1 in the controls, compared with 228 m3 ha-1 in plots treated with 600 kg N ha-1. Pre-dawn needle water potential () measured in three consecutive summers (when rainfall ranged from 53 to 106 mm) were consistently higher (less water stress) in nitrogen fertilised than in control trees. Similarly, the water stress integral (S) decreased consistently with increasing levels of nitrogen, although total water use in fertilised trees would have been substantially higher because fertiliser application increased the leaf area index. The relationship between S and basal area was strong and paralleled that of foliar nitrogen concentration and basal area growth. Therefore, nitrogen application increased growth rates of trees by improving the nutrient status of trees and lowering the water stress on trees in summer.Families showed markedly different responses of basal area growth to nitrogen, ranging from an increase of 9.4% over three years for the least responsive family to 99.0% for the most responsive. There was no nitrogen × family interaction on or S suggesting that the large genetic variation in the growth response to nitrogen is mediated by factors other than water relations. These results have implications for managing highly productive plantations grown in an environment where rainfall is low compared to potential evapotranspiration.  相似文献   

10.
韩琳  王鸽 《生态学杂志》2012,31(8):1893-1902
以长白山阔叶红松混交林为研究对象,于2006—2008年原位模拟不同形态氮((NH4)2SO4、NH4Cl和KNO3)沉降水平(22.5和45kgN·hm-2·a-1),利用树脂芯法技术(resin-core incubation technique)测定了表层(有机层0~7cm)和土层(0~15cm)土壤氮素净矿化、净氨化和净硝化通量的季节和年际变化规律。同时,结合前人报道的有关林地碳、氮过程及其环境变化影响的结果,力求有效预估森林生态系统中氮素年矿化通量对大气氮沉降量和水热条件等因子变化的响应。结果表明,长白山阔叶红松林地土壤氮素年净矿化通量为1.2~19.8kgN·hm-2·a-1,2008年不同深度的土壤氮素年净矿化通量均显著高于2006和2007年(P<0.05)。随着模拟氮沉降量增加,土壤氮素净矿化通量也随之增加,尤其外源NH4+-N输入对净矿化通量的促进作用更为明显(P<0.05),但随着施肥年限的延长,这种促进作用逐渐减弱。与林地0~15cm土壤相比,氮沉降增加对0~7cm有机层氮素净氨化和净矿化通量的促进作用更为明显,尤其NH4Cl处理的促进作用更大。结合前人报道的野外原位观测结果,土壤氮素年净矿化通量随氮素沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素净矿化通量的贡献率约为52%;氮沉降量(x1)和pH值(x2)可以解释区域森林土壤氮素年净矿化通量(y)变化的70%(y=0.54x1-18.38x2-109.55,R2=0.70,P<0.0001)。前人研究结果仅提供区域年均温度,未考虑积温的影响,这可能是造成年净矿化通量与温度无关的原因。今后的研究工作应该加强区域森林土壤积温观测,进而更加准确地预估森林土壤氮素的年净矿化通量。  相似文献   

11.
12.
亚洲中部干旱区地处欧亚大陆腹地, 干旱少雨, 生态环境十分脆弱, 研究该地区大气与地表之间的能量和物质交换对干旱区水资源利用和生态环境保护具有重要意义。该文分析了亚洲中部干旱区荒漠与草地生态系统能量、水汽和CO2通量的日变化及季节变化特征, 探究了水汽和CO2通量对主要环境因子的响应。通过分析亚洲中部干旱区3个站点的涡度相关资料发现: 亚洲中部干旱区荒漠和草地生态系统在生长季(4-10月)能量、水汽通量、净CO2通量和总初级生产力的日变化呈“单峰型”, 而荒漠生态系统呼吸日变化相对稳定; 草地生态系统白天的潜热通量占净辐射通量的比例明显高于荒漠生态系统; 草地生态系统在5-8月呈现较强的碳汇, 而荒漠生态系统表现为弱碳汇。亚洲中部干旱区草地和荒漠生态系统水汽通量和总初级生产力对降水、净辐射通量或光合有效辐射、饱和水汽压差、气温均表现出明显的敏感性。  相似文献   

13.
Isolation by spatial distance (IBD), environment (IBE), and historical climatic instability (IBI) are three common processes assessed in phylogeographic and/or landscape genetic studies. However, the relative contributions of these three processes with respect to spatial genetic patterns have seldom been compared. Moreover, whether the relative contribution differs in different regions or when assessed using different genetic markers has rarely been reported. Lindera obtusiloba has been found to have two sister genetic clades of chloroplast (cpDNA) and nuclear microsatellite (nSSR), both of which show discontinuous distribution in northern and southern East Asia. In this study, we used the Mantel test and multiple matrix regression with randomization (MMRR) to determine the relative contributions of IBD, IBE, and IBI with respect to L. obtusiloba populations. Independent Mantel tests and MMRR calculations were conducted for two genetic data sets (cpDNA and nSSR) and for different regions (the overall species range, and northern and southern subregions of the range). We found a significant IBI pattern in nSSR divergence for all assessed regions, whereas no clear IBI pattern was detected with respect to cpDNA. In contrast, significant (or marginal) divergent IBD patterns were detected for cpDNA in all regions, whereas although a significant IBE was apparent with respect to the overall range, the effect was not detected in the two subregions. The differences identified in nSSR and cpDNA population divergence may be related to differences in the heredity and ploidy of the markers. Compared with the southern region, the northern region showed less significant correlation patterns, which may be related to the shorter population history and restricted population range. The findings of this study serve to illustrate that comparing between markers or regions can contribute to gaining a better understanding the population histories of different genomes or within different regions of a species' range.  相似文献   

14.
Jenkinson  D. S. 《Plant and Soil》2001,228(1):3-15
The 6 billion people alive today consume about 25 million tonnes of protein nitrogen each year, a requirement that could well increase to 40–45 million tonnes by 2050. Most of them ultimately depend on the Haber-Bosch process to fix the atmospheric N2 needed to grow at least part of their protein and, over the earth as a whole, this dependency is likely to increase. Humans now fix some 160 million tonnes of nitrogen per year, of which 98 are fixed industrially by the Haber-Bosch process (83 for use as agricultural fertilizer, 15 for industry), 22 during combustion and the rest is fixed during the cultivation of leguminous crops and fodders. These 160 million tonnes have markedly increased the burden of combined nitrogen entering rivers, lakes and shallow seas, as well as increasing the input of NH3, N2O, NO and NO2 to the atmosphere. Nitrogen fertilizers give large economic gains in modern farming systems and under favourable conditions can be used very efficiently. Losses of nitrogen occur from all systems of agriculture, with organic manures being particularly difficult to use efficiently. Although nitrate leaching has received much attention as an economic loss, a cause of eutrophication and a health hazard, gaseous emissions may eventually prove to be the most serious environmentally. Scientists working on the use and fate of nitrogen fertilizers must be careful, clear headed and vigilant in looking for unexpected side effects.  相似文献   

15.
二氧化氮(NO2)是大气氮氧化物之一,是大气气溶胶颗粒形成的主要成分,降低大气NO2浓度可减轻空气中的雾霾.大气NO2通过干沉降和湿沉降两种方式降落到植物叶片.植物吸收NO2后主要通过两种代谢途径来降低空气中NO2浓度: 一是主要在细胞质和叶绿体中利用还原酶的氮代谢途径,二是在质外体和细胞质中的歧化反应.植物吸收NO2干扰了植物正常的生长和生理代谢,包括: 植物营养和生殖生长,植物体内硝酸还原酶(NaR)活性、亚硝酸还原酶(NiR)活性、氮素吸收、光合等生理代谢过程.对目前国内外有关大气NO2影响植物生长与代谢的研究进展进行了综述,并对植物吸收NO2的生理及分子机制的未来研究方向进行了展望.  相似文献   

16.
In a field trial, done over two seasons, nitrogen and fungicide inputs to winter wheat were varied to obtain a range of yields to study the effects on aphid population development and the aphid-yield loss relationship. In the first year, the maximum density of Metopolophium dirhodum and total aphid index were significantly higher in the plots receiving the largest amount of nitrogen but there were few other consistent effects on aphid population development. In the second year there were no significant effects of either nitrogen or fungicide on aphid population development. Mean yields were high in 1987 and 1988 (7.0 and 8.5 t/ha respectively) with less than a 2 t/ha range in either year. There were no significant effects of aphids on yield in the first year but in the second, aphids caused a significant reduction. Damage per aphid unit did not change with increase in yield. The use of this approach in determining pest-yield loss relationships is discussed.  相似文献   

17.
该文以福建武夷山亚热带常绿阔叶林为研究对象, 通过设置3个氮(N)添加梯度的野外实验, 研究了群落内乔木植物、灌木植物、草本植物、蕨类植物和苔藓植物叶片N、磷(P)化学计量特征对N沉降的响应, 以及不同功能群和物种化学计量特征对N沉降响应的差异。在已开展5年人工N添加的样地内, 3年的监测结果表明: N添加整体上提高了植物叶片N含量, 草本层植物叶片N含量对N添加的响应比乔木层和灌木层植物更加敏感, 优势种米槠(Castanopsis carlesii)、草本植物砂仁(Amomum villosum)、蕨类植物狗脊(Woodwardia japonica)的叶片N含量显著增加。N添加整体上增加了植物叶片P含量, 乔木层植物和灌木层植物叶片P含量没有显著变化, 草本层植物叶片P含量显著增加, 而苔藓植物叶片P含量显著减少。N添加促使武夷山亚热带常绿阔叶林植物叶片N:P由18.67上升至19.72, 加剧了植物生长的P限制; 乔木物种N:P的变化较灌木和草本物种更加稳定。N添加条件下, 植物叶片N:P的变化主要受到叶片P含量而非N含量变化的影响, N添加对生态系统P循环的影响显著。  相似文献   

18.
Acquisition of mineral nitrogen by roots from the surrounding environment is often not completely efficient, in which a variable amount of leakage (efflux) relative to gross uptake (influx) occurs. The efflux/influx ratio (E/I) is, therefore, inversely related to the efficiency of nutrient uptake at the root level. Time‐integrated estimates of E/I and other nitrogen‐use traits may be obtainable from variation in stable isotope ratios or through compartmental analysis of tracer efflux (CATE) using radioactive or stable isotopes. To compare these two methods, Populus balsamifera L. genotypes were selected, a priori, for high or low nitrogen isotope discrimination. Vegetative cuttings were grown hydroponically, and E/I was calculated using an isotope mass balance model (IMB) and compared to E/I calculated using 15N CATE. Both methods indicated that plants grown with ammonium had greater E/I than nitrate‐grown plants. Genotypes with high or low E/I using CATE also had similarly high or low estimates of E/I using IMB, respectively. Genotype‐specific means were linearly correlated (r = 0.77; P = 0.0065). Discrepancies in E/I between methods may reflect uncertainties in discrimination factors for the assimilatory enzymes, or temporal differences in uptake patterns. By utilizing genotypes with known variation in nitrogen isotope discrimination, a relationship between nitrogen isotope discrimination and bidirectional nitrogen fluxes at the root level was observed.  相似文献   

19.
《植物生态学报》2016,40(11):1124
Aims Our purpose was to explore the effects of nitrogen addition on foliar nitrogen (N), phosphorus (P) and N:P stoichiometry and to assess their differences among different species and functional groups.
Methods N addition experiment has been conducted in a subtropical evergreen broad-leaved forest in Mount Wuyi, Fujian Province since 2011. Foliar concentrations of nitrogen and phosphorus were measured and foliar stoichiometry was estimated in tree, shrub, herb, fern and moss species following the N addition treatments from 2013 to 2015.
Important findings Generally, foliar N increased for almost all species and herbaceous plants are much more sensitive than trees and shrubs under N addition. Foliar N of Castanopsis carlesii, Amomum villosum, Woodwardia japonica increased significantly under N addition. Foliar P for most species was sensitive to the N addition. Foliar P of herbaceous plants increased significantly but foliar P of Leucobryum chlorophyllosum decreased significantly. The results showed the subtropical evergreen forest in Mount Wuyi was mainly limited by P and mean foliar N:P ratios enhanced from 18.67 to 19.72 under N addition, indicating that the strength of P limitation was enhanced by N addition. N:P ratios of the dominant arboreal species in the communities tended to be stable, while N:P ratios of herbaceous plants and shrubs increased. The changes in N:P ratios were mainly determined by P dynamics instead of N dynamics under N addition, and our results confirmed that increasing N availability can affect P cycling.  相似文献   

20.
《植物生态学报》2014,38(8):795
亚洲中部干旱区地处欧亚大陆腹地, 干旱少雨, 生态环境十分脆弱, 研究该地区大气与地表之间的能量和物质交换对干旱区水资源利用和生态环境保护具有重要意义。该文分析了亚洲中部干旱区荒漠与草地生态系统能量、水汽和CO2通量的日变化及季节变化特征, 探究了水汽和CO2通量对主要环境因子的响应。通过分析亚洲中部干旱区3个站点的涡度相关资料发现: 亚洲中部干旱区荒漠和草地生态系统在生长季(4-10月)能量、水汽通量、净CO2通量和总初级生产力的日变化呈“单峰型”, 而荒漠生态系统呼吸日变化相对稳定; 草地生态系统白天的潜热通量占净辐射通量的比例明显高于荒漠生态系统; 草地生态系统在5-8月呈现较强的碳汇, 而荒漠生态系统表现为弱碳汇。亚洲中部干旱区草地和荒漠生态系统水汽通量和总初级生产力对降水、净辐射通量或光合有效辐射、饱和水汽压差、气温均表现出明显的敏感性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号