首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of COD soluble/ COD total were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite  相似文献   

2.
The structures of microbial communities in lab-scale upflow anaerobic sludge blanket (UASB) reactors for treating municipal wastewater with different ratios of CODsoluble/ CODtotal were studied using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes. The microbial structure of the inoculum sludge obtained from a full-scale UASB reactor of treating potato processing wastewater was compared with the structures of sludges collected from three lab-scale UASB reactors after eight months feeding with raw municipal wastewater, with CEPS (chemically enhanced primary sedimentation) pretreated municipal wastewater, and with a synthetic municipal sewage, respectively. Computer-aided numerical analysis of the DGGE fingerprints showed that the bacterial community underwent major changes. The sludges for treating raw and CEPS pretreated wastewater had very similar bacterial and archaeal communities (82% and 96% similarity) but were different from that for treating the synthetic sewage. Hence, despite similar % COD in the particulate form in the synthetic and the real wastewater, the two wastewaters were selected for different microbial communities. Prominent DGGE bands of Bacteria and Archaea were purified and sequenced. The 16S rRNA gene sequences of the dominant archaeal bands found in the inoculum, and UASB sludge fed with raw sewage, CEPS pretreated wastewater, and synthetic sewage were closely associated withMethanosaeta concilii. In the UASB sludge fed with synthetic sewage, another dominant band associated with an uncultured archaeon 39-2 was found together withM. concilii.  相似文献   

3.
The effect of cationic polymer additives on biomass granulation and COD removal efficiency had been examined in lab-scale upflow anaerobic sludge blanket (UASB) reactors, treating low strength synthetic wastewater (COD 300-630 mg/l). Under identical conditions, two reactors were operated with and without polymer additives in inoculum under four different organic loading rates (OLRs). The optimum polymer dose was adopted based upon the results of jar test and settling test carried out with inoculum seed sludge. With the use of thick inoculum, SS greater than 110 g/l and VSS/SS ratio less than 0.3, granulation was observed in UASB reactor treating synthetic wastewater as well as actual sewage, when OLR was greater than 1.0 kg COD/m(3) d. Polymer additive with such thick inoculum was observed to deteriorate percentage granules and COD removal efficiency compared to inoculum without polymer additives. At OLR less than 1.0 kg COD/m(3) d, proper granulation could not be achieved in both the reactors inoculated with and without polymer additive. Also, under this low loading, drastic reduction in COD removal efficiency was observed with polymer additives in inoculum. Hence, it is rational to conclude that biomass granulation for treatment of low strength biodegradable wastewater depends on the applied loading rate and selection of thick inoculum sludge.  相似文献   

4.
In upflow anaerobic sludge blanket (UASB) digesters treating raw sewage at low temperatures, the sludge progressively lost methanogenic activity, indicating the possibility of methanogenic activity inhibition caused by wastewater constituents. To check this fact, batch and semi-continuous methanogenic toxicity assays were carried out with raw and centrifuged sewage. Permanent methanogenic toxicity on anaerobic sludge of approximately 50% was found when the sludge exposure to wastewater was renewed in a semi-continuous way. A stronger methanogenic inhibition of about 70-100% was observed when an active anaerobic sludge was exposed to mixed liquor from the UASB digester treating municipal wastewater. Suspended solids removal from sewage slightly reduced methanogenic toxicity. Effective concentration of municipal wastewater that caused a 50% reduction in methanogenic activity was estimated to be in the range of 150-200 mg CODl(-1). As methanogenic inhibition appeared to be related to remaining COD, higher methanogenic toxicity in digesters operating with low conversion efficiency will be expected.  相似文献   

5.
The aim of this work was to study the influence of influent chemical oxygen demand (COD), upflow velocity of wastewater, and cationic polymer additives in inoculum, on biomass granulation and COD removal efficiency in upflow anaerobic sludge blanket (UASB) reactor for treating low strength wastewater. Statistical models were formulated based on these three variables to optimize the biomass granulation and COD removal efficiency in UASB reactors using a two-level, full factorial design. For the thick inoculum used in this study, having suspended solids (SS) >80 g/l and volatile suspended solids (VSS) to SS ratio <0.3, cationic polymer additives in the inoculum showed adverse effect on biomass granulation and COD removal efficiency. It is concluded that for such thick inoculum, granulation can be obtained while treating low strength wastewaters in UASB reactor by selecting proper combination of influent COD and liquid upflow velocity so as to represent the organic loading rate (OLR) greater than 1.0 kg COD/m(3) d. Validation of model predictions for treatment of synthetic wastewater and actual sewage reveals the efficacy of these models for enhancing granulation and COD removal efficiency.  相似文献   

6.
Summary Scanning electron microscopy was applied to evaluate the influence of inoculum on efficiency of initial biofilm formation and reactor performance. Five anaerobic fixed-bed reactors were inoculated with anaerobic sludges from different sources and operated in parallel under identical conditions with defined wastewater and acetate, propionate and butyrate as constituents In all sludges Methanothrix sp. was the predominant acetotroph. The reactors inoculated with anaerobic sludge adapted to the wastewater achieved the highest space loading with 21.0 g COD/l·d after 58 days. The inoculation with granular sludge from an upflow anaerobic sludge blanket (UASB) reactor resulted in significantly less reactor efficiency. Time course of biofilm formation and biofilm thickness (ranging from 20–200 m) depended on the type of inoculum.  相似文献   

7.
Respiratory quinones were used as biomarkers to study bacterial community structures in activated sludge reactors used for enhanced biological phosphate removal (EBPR). We compared the quinone profiles of EBPR sludges and standard sludges, of natural sewage and synthetic sewage, and of plant scale and laboratory scale systems. Ubiquinone (Q) and menaquinone (MK) components were detected in all sludges tested at molar MK/Q ratios of 0.455 to 0.981. The differences in MK/Q ratios were much larger when we compared different wastewater sludges (i.e., raw sewage and synthetic sewage) than when we compared sludges from the EBPR and standard processes or plant scale and laboratory scale systems. In all sludges tested a Q with eight isoprene units (Q-8) was the most abundant quinone. In the MK fraction, either tetrahydrogenated MK-8 or MK-7 was the predominant type, and there was also a significant proportion of MK-6 to MK-8 in most cases. A numerical cluster analysis of the profiles showed that the sludges tested fell into two major clusters; one included all raw sewage sludges, and the other consisted of all synthetic sewage sludges, independent of the operational mode and scale of the reactors and the phosphate accumulation. These data suggested that Q-8-containing species belonging to the class Proteobacteria (i.e., species belonging to the beta subclass) were the major constituents of the bacterial populations in the EBPR sludge, as well as in standard activated sludge. Members of the class Actinobacteria (gram-positive bacteria with high DNA G+C contents) were the second most abundant group in both types of sludge. The bacterial community structures in activated sludge processes may be affected more by the nature of the influent wastewater than by the introduction of an anaerobic stage into the process or by the scale of the reactors.  相似文献   

8.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

9.
The process of granule formation in upflow anaerobic sludge blanket (UASB) reactors was studied using oligonucleotide hybridization probes. Two laboratory-scale UASB reactors were inoculated with sieved primary anaerobic digester sludge from a municipal wastewater treatment plant and operated similarly except that reactor G was fed glucose, while reactor GP was fed glucose and propionate. Size measurements of cell aggregates and quantification of different populations of methanogens with membrane hybridization targeting the small-subunit ribosomal RNA demonstrated that the increase in aggregate size was associated with an increase in the abundance of Methanosaeta concilii in both reactors. In addition, fluorescence in situ hybridization showed that the major cell components of small aggregates collected during the early stages of reactor startup were M. concilii cells. These results indicate that M. concilii filaments act as nuclei for granular development. The increase in aggregate size was greater in reactor GP than in reactor G during the early stages of startup, suggesting that the presence of propionate-oxidizing syntrophic consortia assisted the formation of granules. The mature granules formed in both reactors exhibited a layered structure with M. concilii dominant in the core, syntrophic consortia adjacent to the core, and filamentous bacteria in the surface layer. The excess of filamentous bacteria caused delay of granulation, which was corrected by increasing shear through an increase of the recycling rate.  相似文献   

10.
Studies have been carried out to correlate biogas-induced mixing and granulation in upflow anaerobic sludge blanket (UASB) reactors, treating low-strength as well as high-strength biodegradable wastewaters. A dimensionless granulation index (GI) has been framed taking into account the mixing in sludge bed due to produced biogas. Analysis of full-scale, pilot-scale and lab-scale UASB reactors treating actual wastewaters reveals the significance of biogas-induced mixing, represented by GI, on granulation of biomass in the reactors. For obtaining proper granulation in UASB reactors (percentage granules greater than 50%, w/w), resulting in higher chemical oxygen demand (COD) removal efficiency, it is recommended to maintain GI values in the range of 15,000–57,000.  相似文献   

11.
We investigated bacterial and archaeal community structures and population dynamics in two anaerobic bioreactors processing a carbohydrate- and sulfate-rich synthetic wastewater. A five-compartment anaerobic migrating blanket reactor (AMBR) was designed to promote biomass and substrate staging, which partially separates the processes of methanogenesis and sulfidogenesis in the middle and outer compartment(s) respectively. The second reactor was a conventional, single-compartment upflow anaerobic sludge blanket (UASB) reactor. Both reactors, which were seeded with the same inoculum, performed well when the influent chemical oxygen demand (COD)/SO(4) (2-) mass ratio was 24.4. The AMBR performed worse than the UASB reactor when the influent COD/SO(4) (2-) mass ratio was decreased to 5.0 by raising the sulfate load. Terminal restriction fragment length polymorphism analyses of bacterial 16S rRNA genes showed that the increase in sulfate load had a greater impact on bacterial diversity and community structure for the five AMBR compartments than for the UASB reactor. Moreover, bacterial community profiles across AMBR compartments became more similar through time, indicating a converging, rather than a staged community. While similar populations were abundant in both reactors at the beginning of the experiment, fermenting bacteria (clostridia, streptococci), and sulfate-reducing bacteria became more abundant in the AMBR, after shifting to a higher sulfate load, while a novel Thermotogales-like population eventually became predominant in the UASB reactor. A similar shift in the community structure of the hydrogenotrophic methanogens in the AMBR occurred: representatives of the Methanobacteriaceae out-competed the Methanospirillaceae after increasing the sulfate load in the AMBR, while the archaeal community structure was maintained in the UASB.  相似文献   

12.
Anaerobic acetate degradation at 70 degrees C and at 55 degrees C (as a reference) was studied by running laboratory upflow anaerobic sludge blanket (UASB) reactors inoculated with mesophilic granular sludge. In UASB reactors fed with acetate-containing media (3 g of chemical oxygen demand [COD] per liter, corresponding to 47 mM acetate) approximately 50 days was needed at 70 degrees C and less than 15 days was needed at 55 degrees C to achieve an effluent COD of 500 to 700 mg/liter. In the UASB reactors at both 70 and 55 degrees C up to 90% of the COD was removed. Batch assays showed that sludges from two 70 degrees C UASB reactors, one run at a low effluent acetate concentration and the other run at a high effluent acetate concentration, exhibited slightly different responses to temperatures in the range from 37 to 70 degrees C. Both 70 degrees C sludges, as well as the 55 degrees C sludge, produced methane at temperatures of 37 to 73 degrees C. The 55 degrees C sludge exhibited shorter lag phases than the 70 degrees C sludges and higher specific methane production rates between 37 and 65 degrees C.  相似文献   

13.
Two lab-scale bioreactors (reactors 1 and 2) were employed to examine the changes in biological performance and the microbial community of an activated sludge process fed with ozonated sludge for sludge reduction. During the 122 d operation, the microbial activities and community in the two reactors were evaluated. The results indicated that, when compared with the conventional reactor (reactor 1), the reactor that was fed with the ozonated sludge (reactor 2) showed good removal of COD, TN and cell debris, without formation of any excess sludge. In addition, the protease activity and intracellular ATP concentration of reactor 2 were increased when compared to reactor 1, indicating that reactor 2 had a better ability to digest proteins and cell debris. DGGE analysis revealed that the bacterial communities in the two reactors were different, and that the dissimilarity of the bacterial population was nearly 40%. Reactor 2 also contained more protozoa and metazoa, which could graze on the ozone-treated sludge debris directly.  相似文献   

14.
Laboratory scale anaerobic upflow filter, sludge blanket and hybrid bed reactors were operated for 860 days in the treatment of high ammonia landfill leachate. Organic loading was gradually increased from 1.3 to 23.5 kg COD/m3 day in the start-up period and then fluctuated according to the COD concentration of raw leachate. To prevent free ammonia inhibition, influent pH was reduced to 4.5 after Day 181 and consequently COD removal efficiencies above 80% were achieved in all reactors. However, the anaerobic filter and hybrid bed reactor were generally found slightly more efficient and stable than the UASB reactor. In addition to conventional anaerobic reactor control parameters, the complementary techniques of denaturing gradient gel electrophoresis (DGGE), cloning and fluorescent in situ hybridization (FISH) were used to identify and compare the microbial profiles in the reactors at Day 830. Molecular analyses revealed that acetoclastic Methanosaeta species were prevalent in all reactors and configuration did not have an impact on microbial diversity in the long-term.  相似文献   

15.
Water extract of Moringa oleifera seeds (WEMOS) was used to enhance the start-up of a self-inoculated upflow anaerobic sludge blanket (UASB) reactor treating raw domestic wastewater. Two reactors labelled control (RC) and WEMOS addition (RM) were started without special inoculum. Both reactors were fed continuously for 22 weeks with domestic wastewater containing an average total chemical oxygen demand (COD) of 320 mg O2/l and suspended solid (SS) of 165 mg/l. The reactors operated during the entire experimental period at 29 degrees C and at a hydraulic retention time (HRT) of 4 h. The RM reactor received 2 ml WEMOS per litre of influent. WEMOS solution was prepared on the basis of 2.5% (w/v) ground M. oleifera seeds in water. The results of 22 weeks' operation showed an improvement in the performance of the RM compared to that of the RC. The dosage of WEMOS in the feed (1) shortened the biological start-up period by 20%, (2) increased acidogenic and methanogenic activity by a factor of 2.4 and 2.2 respectively, (3) increased the specific biogas production by a factor of 1.6, (4) favoured fast growth of the sludge bed, and (5) allowed the aggregation of coccoid bacteria and growth of microbial nuclei, which are precursors of anaerobic granulation.  相似文献   

16.
The feasibility of thermophilic (55-65 degrees C) and extreme thermophilic (70-80 degrees C) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular sludge previously not exposed to high temperatures. Full methanol and formate degradation at temperatures up to, respectively, 70 and 75 degrees C, were achieved when operating UASB reactors fed with sulfate rich (COD/SO4(2-)=0.5) synthetic wastewater. Methane-producing archaea (MPA) outcompeted sulfate-reducing bacteria (SRB) in the formate-fed UASB reactor at all temperatures tested (65-75 degrees C). In contrast, SRB outcompeted MPA in methanol-fed UASB reactors at temperatures equal to or exceeding 65 degrees C, whereas strong competition between SRB and MPA was observed in these reactors at 55 degrees C. A short-term (5 days) temperature increase from 55 to 65 degrees C was an effective strategy to suppress methanogenesis in methanol-fed sulfidogenic UASB reactors operated at 55 degrees C. Methanol was found to be a suitable electron donor for sulfate-reducing processes at a maximal temperature of 70 degrees C, with sulfide as the sole mineralization product of methanol degradation at that temperature.  相似文献   

17.
Longterm performance and stability of two upflow anaerobic sludge blanket (UASB) reactors inoculated with granular sludge and treating a synthetic waste water containing pentachlorophenol (PCP) and phenol were studied. A similar system consisting of two fixed-film reactors inoculated with anaerobic digested sewage sludge were further studied. One reactor in each series received glucose in addition to the phenols. Dechlorination of PCP proceeded via two different dominating pathways in the respective reactor systems, suggesting that two distinct microbial populations were present, probably originating from the different inocula. Dechlorinating activity was maintained for more than 18 months in the UASB reactors and was generally higher than in the fixed-film reactors. In the fixed-film reactors, dechlorination of PCP suddenly decreased after 15.5 months of operation compared to earlier performance. Since no operational parameters had been changed, this indicated that the enriched culture was unstable on a longterm basis. Addition of yeast extract to the medium restored activity. General process stability in both reactor systems was clearly enhanced by the addition of glucose and was superior in the UASB/granular sludge system. The better performance and the higher stability in the UASB/granular sludge reactor highlights the importance of thorough screening of inocular prior to start-up of processes treating waste waters containing xenobiotic compounds.Abbreviations PCP pentachlorophenol - TeCP tetrachlorophenol - TCP trichlorophenol - DCP dichlorophenol - UASB upflow anaerobic sludge blanket - HRT hydraulic retention time  相似文献   

18.
Biosolids pellets produced from anaerobically digested municipal wastewater sludge by drying to greater than 90% total solids at 110-115 degrees C for at least 75 min, were tested for their suitability as an inoculum source for fermentative hydrogen production. The hydrogen recoveries (mg gaseous H(2) produced as COD/mg added substrate COD) for glucose-fed batch systems were equal, 20.2-21.5%, between biosolids pellets and boiled anaerobic digester sludge as inoculum sources. Hydrogen recoveries from primary sludge were 2.4% and 3.5% using biosolids pellets and boiled sludge, respectively, and only 0.2% and 0.8% for municipal wastewater. Biosolids pellets should be a practical inoculum source for fermentative hydrogen reactors, although the effectiveness will depend on the wastewater treated.  相似文献   

19.
The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.  相似文献   

20.
Sabry T 《Bioresource technology》2008,99(10):4073-4077
The aim of this work was to investigate the resistance to hydraulic shock loads of flocculent versus granular sludge used in UASB reactors treating sewage with high solids content. Step-wise shock loads were conducted through decreasing HRT to examine the extent of reducing this parameter without significantly changing COD removal efficiency of the reactor. The lowest HRT of 4h resulted in only 3-4% reduction in the COD removal efficiency and the effluent contained low VFAs. Both sludge types have been also tested under transient hydraulic shock loads, which represent the wide variations between peak and average sewage flows occurring in small communities (rural areas). Up to 6 times the average flow no significant impact was observed on reactor performance except during and few hours after applying the shock loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号