首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N load on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N load has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended. A comprehensive approach that applies political and technological measures with closer cooperation is necessary to control reactive N in the environment.  相似文献   

2.

Fertilizer N use in Japan has decreased by about 30% from 1960 to 2000, while keeping a little increase in cereal yields. This has resulted in a significant increase in apparent nitrogen use efficiency, in particular for rice. On the other hand, national N load on the environment associated with the production and consumption of domestic and imported agricultural products has almost tripled during this period, mainly due to the dramatic increase of imports of food and feedstuffs. The environmental problems, including water and air pollution, caused by the excessive loads of N are serious public concerns and there is an urgent need to minimize N losses from agricultural production. In order to meet the necessity for reducing the environmental impacts by excess N, political and technological measures have been taken at regional and country levels. In recent years, the Japanese government has embarked on a series of policies to encourage transition to an environmentally conscious agriculture. Promoting proper material circulation with reducing fertilizer impact and utilizing biomass and livestock wastes is emphasized in these policies. The effectiveness of environmental assessment and planning for reducing regional and national N load has been discussed. Implementation of environmentally friendly technologies and management, both conventional and innovational, have been developed and adopted in Japanese agriculture. The effectiveness of conventional technologies in reducing environmental reactive N has been re-evaluated. Innovative technologies, such as use of controlled availability fertilizers and livestock wastes compost pellets, are being investigated and extended. A comprehensive approach that applies political and technological measures with closer co-operation is necessary to control reactive N in the environment.

  相似文献   

3.
The nitrogen cycle of pre-industrial ecosystems has long been remarkably closed, in spite of the high mobility of this element in the atmosphere and hydrosphere. Inter-regional and international commercial exchanges of agricultural goods, which considerably increased after the generalization of the use of synthetic nitrogen fertilizers, introduced an additional type of nitrogen mobility, which nowadays rivals the atmospheric and hydrological fluxes in intensity, and causes their enhancement at the local, regional and global scales. Eighty-five per cent of the net anthropogenic input of reactive nitrogen occurs on only 43 per cent of the land area. Modern agriculture based on the use of synthetic fertilizers and the decoupling of crop and animal production is responsible for the largest part of anthropogenic losses of reactive nitrogen to the environment. In terms of levers for better managing the nitrogen cascade, beyond technical improvement of agricultural practices tending to increase nitrogen use efficiency, or environmental engineering management measures to increase nitrogen sinks in the landscape, the need to better localize crop production and livestock breeding, on the one hand, and agriculture and food demand on the other hand, is put forward as a condition to being able to supply food to human populations while preserving environmental resources.  相似文献   

4.
Ammonia emissions from the agricultural sector give rise to numerous environmental and societal concerns and represent an economic challenge in crop farming, causing a loss of fertilizer nitrogen. Ammonia emissions from agriculture originate from manure slurry (livestock housing, storage, and fertilization of fields) as well as urea-based mineral fertilizers. Consequently, political attention has been given to ammonia volatilization, and regulations of ammonia emissions have been implemented in several countries. The molecular cause of the emission is the enzyme urease, which catalyzes the hydrolysis of urea to ammonia and carbonic acid. Urease is present in many different organisms, encompassing bacteria, fungi, and plants. In agriculture, microorganisms found in animal fecal matter and soil are responsible for urea hydrolysis. One strategy to reduce ammonia emissions is the application of urease inhibitors as additives to urea-based synthetic fertilizers and manure slurry to block the formation of ammonia. However, treatment of the manure slurry with urease inhibitors is associated with increased livestock production costs and has not yet been commercialized. Thus, development of novel, environmentally friendly and cost-effective technologies for ammonia emission mitigation is important. This mini-review describes the challenges associated with the volatilization of ammonia in agriculture and provides an overview of the molecular processes of urea hydrolysis and ammonia emissions. Different technologies and strategies to reduce ammonia emissions are described with a special focus on the use of urease inhibitors. The mechanisms of action and efficiency of the most important urease inhibitors in relation to agriculture will be briefly discussed.  相似文献   

5.
种养一体规模化、集约化是华北平原农业发展的必然趋势,而氮素是连接种植养殖的主要养分资源,以河北津龙循环农业园区为例,采用文献资料、实地调查方法分析农场水平氮素流动特征及利用率,并通过情景分析方法提出农场氮素管理措施,为实现农场水平氮养分资源高效利用、提高农场生产系统生产力和改善华北平原循环农业模式提供技术支撑和科学依据.结果表明: 在农场水平下,化肥和有机肥输入氮量674.6 kg·hm-2·a-1,占总输入氮量的88.3%,氮利用率为41.5%,种植系统氮盈余量190.7 kg·hm-2·a-1,施氮量过多是造成种植系统氮利用率低和氮素盈余量高的主要原因.养殖系统中外购饲料提供氮量占饲料总输入氮量的83.2%,粪尿排氮量为776.6 t·a-1,而还田比例仅为36.3%,氮利用率19.7%.农场水平氮总利用率为40.7%.情景分析表明,农田减少化肥施氮量50%(情景1)、增加来自农场内部玉米籽粒产量(情景2)措施,可分别使种植系统氮利用率提高34.6%和15.6%,同时农场水平氮总利用率分别提高18.7%和9.8%;另外,优化养殖系统饲料结构(情景3),可使氮总利用率提高19.1%.因此,减少化肥氮施用量、调整作物种植结构、优化饲料结构等,是提高农场氮生产力和实现环境友好双赢效果的措施和途径.  相似文献   

6.
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost‐competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case‐by‐case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land‐use decisions are made and how new social, political and economic forces in the future will influence this process.  相似文献   

7.
可持续农业在当今世界至关重要,因为它有潜力满足我们的农业需求,而这是传统农业无法做到的。这种类型的农业采用一种特殊的耕作技术,既能充分利用环境资源,又能保证不造成任何危害。因此,该技术对环境友好,保证了农产品的安全和健康。微生物种群对推动农业生态系统稳定和生产力的基本过程起着重要作用。若干调查旨在增进对土壤微生物群落的多样性、动态和重要性及其在农业生产力中的有益合作。综述了部分土壤微生物及其对可持续农业生产的重要性。  相似文献   

8.
Historically, agricultural production in the Amazon has been painted as the most environmentally impacting activity. In this study, we investigated the relationship between the increase in agricultural efficiency and the slowdown of deforestation rates in the past decade, correlating these data with municipalities’ agricultural specialization. With the data from the 2006 and 2017 Brazilian Agricultural Census we classified municipalities according to its vegetal or animal specialization and estimated a production frontier using the Stochastic Frontier Analysis (SFA), considering a set of production factors and technological variables. Our results demonstrated that most part of municipalities have no specialization or are based in cattle ranching activities, and the overall agricultural efficiency in the Amazon municipalities grew from 69.5% in 2006 to 74.1% in 2017. The new institutional path in the 21st century contributed to slow deforestation in agricultural activities through an increase in productivity (yield/ha) in the last decade, mainly for vegetal production. Cattle ranching also increased output and efficiency, but it remains the most environmental impacting activity. However, several municipalities could not develop their agricultural production value relative to the most productive areas, suggesting that some factors —technological and productive— that could lead to output increase are not being efficiently allocated, which results in concentrating deforestation in inefficient systems and limiting the effectiveness of current policies. Technological diffusion, especially for small farmers, and private support in environmental issues could contribute to slowdown deforestation without loss of agricultural output.  相似文献   

9.
Asia is the major consumer of fertilizer nitrogen and energy in the world, and consequently shares a considerable proportion of the world creation of reactive nitrogen (Nr). However, if estimated on per capita basis, Asia is characterized by a lower arable land area, fertilizer nitrogen consumption, energy consumption, and gross domestic product, as well as lower daily protein intake. To meet the increasing needs for food and energy for the growing population combined with the improvement of living standards, Nr will inevitably increase. The present study estimates the creation of Nr and the emissions of various N compounds into environment in Asia currently and in 2030. In comparison with the world averages, the lower fertilizer nitrogen and energy use efficiencies, and the lower use of animal wastes for agriculture imply that there is potential for moderating the increase in Nr and its impacts on the environment. Strategies for moderating the increase are discussed.  相似文献   

10.
王文静  魏静  马文奇  杨玉荣  郭彩娟 《生态学报》2010,30(13):3591-3598
土壤有机质与粮食安全和气候变化等重大问题密切相关,也是目前国内外研究热点。通过分析黄淮海平原10个小麦玉米长期定位试验资料,在不同施氮量下建立土壤有机质积累与碳投入的数学模型,探讨了土壤有机质积累与碳氮投入的关系。结果表明:土壤有机质积累与碳投入的关系受氮肥用量的影响显著,无论低量施氮(长期定位试验中的常规施肥量,化肥氮量≤330kg/(hm.2a))还是高量施氮(长期定位试验中的高量施肥量,化肥氮量330kg/(hm.2a)),秸秆根茬碳还田量与土壤有机质变化量之间均呈极显著正相关关系(P0.01);利用土壤有机质积累与碳投入的数学模型计算的维持土壤有机质平衡的碳投入量(MSC),高量施氮时为7254kg/(hm.2a),低量施氮为1297kg/(hm.2a),前者是后者的5.6倍。因此,大量施用氮肥降低了投入碳的积累,不利于土壤有机质的提升。  相似文献   

11.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However,large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE)among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   

12.
A fundamental shift has taken place in agricultural research and world food production. In the past, the principal driving force was to increase the yield potential of food crops and to maximize productivity. Today, the drive for productivity is increasingly combined with a desire for sustainability. For farming systems to remain productive, and to be sustainable in the long-term, it will be necessary to replenish the reserves of nutrients which are removed or lost from the soil. In the case of nitrogen (N), inputs into agricultural systems may be in the form of N-fertilizer, or be derived from atmospheric N2 via biological N2 fixation (BNF).Although BNF has long been a component of many farming systems throughout the world, its importance as a primary source of N for agriculture has diminished in recent decades as increasing amounts of fertilizer-N are used for the production of food and cash crops. However, international emphasis on environmentally sustainable development with the use of renewable resources is likely to focus attention on the potential role of BNF in supplying N for agriculture. This paper documents inputs of N via symbiotic N2 fixation measured in experimental plots and in farmers' fields in tropical and temperate regions. It considers contributions of fixed N from legumes (crop, pasture, green manures and trees), Casuarina, and Azolla, and compares the relative utilization of N derived from these sources with fertilizer N.  相似文献   

13.
At a global scale, cereal yields and fertilizer N consumption have increased in a near-linear fashion during the past 40 years and are highly correlated with one another. However, large differences exist in historical trends of N fertilizer usage and nitrogen use efficiency (NUE) among regions, countries, and crops. The reasons for these differences must be understood to estimate future N fertilizer requirements. Global nitrogen needs will depend on: (i) changes in cropped cereal area and the associated yield increases required to meet increasing cereal demand from population and income growth, and (ii) changes in NUE at the farm level. Our analysis indicates that the anticipated 38% increase in global cereal demand by 2025 can be met by a 30% increase in N use on cereals, provided that the steady decline in cereal harvest area is halted and the yield response to applied N can be increased by 20%. If losses of cereal cropping area continue at the rate of the past 20 years (-0.33% per year) and NUE cannot be increased substantially, a 60% increase in global N use on cereals would be required to meet cereal demand. Interventions to increase NUE and reduce N losses to the environment must be accomplished at the farm- or field-scale through a combination of improved technologies and carefully crafted local policies that contribute to the adoption of improved N management; uniform regional or national directives are unlikey to be effective at both sustaining yield increases and improving NUE. Examples from several countries show that increases in NUE at rates of 1% per year or more can be achieved if adequate investments are made in research and extension. Failure to arrest the decrease in cereal crop area and to improve NUE in the world's most important agricultural systems will likely cause severe damage to environmental services at local, regional, and global scales due to a large increase in reactive N load in the environment.  相似文献   

14.
Nitrogen is one of the major plant nutrients without which the agricultural production is not possible. Nitrogen use in Indian agriculture was nearly 55000 tons in 1950-1951 that increased to 11.31 million tons in 2001-2002. The total food production of the country has also experienced the similar increase from 50.83 to 222 million tons in the respective years. Interestingly the N fertilizer consumption of India remained almost constant during the last six years indicating the possibility of reducing N consumption. The highest N consumption is in North zone owing to the introduction of rice-wheat cropping system followed by West, South and East.The N use efficiency has been reported to be varying between 30% to 50% depending on the crops and the management. But in most of the cases, N use efficiency has been calculated based on the total N removed by the crops (above ground part only) ignoring the N content left in the roots. It has been observed in controlled experiments that the total N uptake by roots varied from 18% to 44% of the total N removed by the above ground parts, i.e. grain and straw. If the root N is also accounted, the N use efficiency will be higher than reported. The management of other organic sources has to be improved so as to increase the fertilizer use efficiency as well as to check the direct release of N in the atmosphere. In this review all these issues will be dealt.  相似文献   

15.
In this article we show that technological development in agriculture exhibits general trends when assessed on a large scale. These trends are generated by changes in the larger socioeconomic context in which the farming system operates. We characterize agricultural performance by land and farm labor productivity and the pattern of use of technological inputs. By means of a cross-sectional analysis of agricultural performance of 20 countries (at the national level), we show that increases in demographic pressure and socioeconomic pressure (increases in average income and labor productivity) in society are the main driving forces of technological development in agriculture. Further, it is shown that the ecological impact of farming (environmental loading) is linked to the particular combination of land productivity and labor productivity at which the agricultural sector operates (through the particular mix and the level of inputs used in agricultural production). Briefly we discuss the role of international trade in agricultural policies and performance. Special attention is given to the situation of Chinese agriculture.  相似文献   

16.
The practice of spreading of livestock wastes onto land used for the production of food or animal feeds is widely regarded as the least environmentally damaging disposal method, however, the practice is still fraught with pitfalls such as N pollution of air and water and significant microbiological risks. Therefore this paper focuses on some of the latest developments that provide new insights into the microbiological safety of animal manures, the related treatment options and the spreading the products onto land. In conclusion the paper stresses the need to fully address issues concerning environmental contamination and transmission of antimicrobial-resistant bacteria through livestock manure, improve current environmental regulations regarding manure management practice and coordination of research activities and dissemination of technical information.  相似文献   

17.
Summary Bioengineering approaches provide unprecedented opportunities for reducing poverty, food insecurity, child malnutrition, and natural resource degradation. Genetic engineering offers outstanding potential to increase the efficiency of crop improvement. Thus agricultural biotechnology could enhance global food production and availability in a sustainable way. Small farmers in developing countries are faced with many problems and constraints which biotechnology may assist. Yet, there are varying levels of opposition to the use of this technology in most countries and it is especially intense in Europe. While there is certain public apprehension with the use of bioengineering in food improvement, the primary hurdles facing this technology are the stringent and burdensome regulatory requirements for commercialization, opposition from the special interest groups, apprehension by the food industry especially with the whole foods, and trade barriers including rigid policies on traceability and labeling. Bioengineered crops such as soybean, maize, cotton, and canola with a few traits have already made a remarkable impaet on food production and environmental quality. But, in the developing world, bioengineering of crops such as bananas, cassava, yams, sweet potatoes, sorghum, rice, maize, wheat, millet, and legumes, along with livestock, can elearly contribute to global food security. However, the integration of biotechnology into agricultural research in developing countries faces many challenges which must be addressed: financial, technical, political, environmental, activism, intellectual-property, biosafety, and trade-related issues. To ensure that developing countries can harness the benefit of this technology with minimal problems, concerted efforts must be pursued to create an awareness of its potential benefits and to address the concerns related to its use through dialog among the various stakeholders: policy makers, scientists, trade groups, food industry, consumer organizations, farmer groups, media, and non-governmental organizations. Biotechnology holds great promise as a new tool in the scientific toolkit for generating applied agricultural technologies; however, per se it is not a panacea for the worlds problems of hunger and poverty.  相似文献   

18.
Nitrogen is one of the major plant nutrients without which the agricultural production is not possible. Nitrogen use in Indian agriculture was nearly 55000 tons in 1950-1951 that increased to 11.31 million tons in 2001 -2002. The total food production of the country has also experienced the similar increase from 50.83 to 222 million tons in the respective years. Interestingly the N fertilizer consumption of India remained almost constant during the last six years indicating the possibility of reducing N consumption. The highest N consumption is in North zone owing to the introduction of rice-wheat cropping system followed by West, South and East. The N use efficiency has been reported to be varying between 30% to 50% depending on the crops and the management. But in most of the cases, N use efficiency has been calculated based on the total N removed by the crops (above ground part only) ignoring the N content left in the roots. It has been observed in controlled experiments that the total N uptake by roots varied from 18% to 44% of the total N removed by the above ground parts, i.e. grain and straw. If the root N is also accounted, the N use efficiency will be higher than reported. The management of other organic sources has to be improved so as to increase the fertilizer use efficiency as well as to check the direct release of N in the atmosphere. In this review all these issues will be dealt.  相似文献   

19.
黄土高原集水农业研究进展   总被引:48,自引:4,他引:44  
肖国举  王静 《生态学报》2003,23(5):1003-1011
回顾了黄土高原集水农业理论与技术体系的研究成果.分析评价了集水农业的研究进展。随着黄土高原集水农业研究方法的改进、研究内容的深入、研究领域的扩充.提出了广义性集水农业研究范畴。在黄土高原集水农业理论研究的基础上.应加强微集雨微灌溉应用技术、现代集雨技术、计算机控制技术与集雨网络等高新技术手段的技术集成.以提高雨水汇集与利用效率。同时.黄土高原集水农业的研究已经从微生境条件下的农业生态系统延伸至区域生态环境保育。利用汇集雨水合理调配生态用水.进行小流域综合治理。农林牧综合发展。生态环境重建的集水型生态农业是黄土高原集水农业的发展趋势。  相似文献   

20.
Nitrogen (N) fertilization in agriculture has been discussed controversially in Germany for almost two centuries. The agronomist Carl Sprengel, who published his theory on the mineral nutrition of plants in 1828, advocated the use of mineral N fertilizers. Chemist Justus von Liebig, on the other hand, vehemently denied around 1850 the need for N fertilization. Although it soon became evident that Sprengel was right and Liebig was wrong, not much synthetic N fertilizer was used in German agriculture until around 1915, when the Haber-Bosch technique enabled the commercial production of NH3. The use of N fertilizers since then has grown, especially since 1950. To increase agricultural productivity, German governments have promoted, directly and indirectly, the use of N in crop and in animal production. Unfortunately, it was overlooked that N surpluses in agriculture increased rapidly; around 1980 they amounted yearly to more than 100 kg ha(-1). The extensive use of N in agriculture is causing environmental damage and is contributing substantially to the external costs of present agriculture. The main N compounds that affect the environment are N2O, NH3, and NO3. These compounds are considered to contribute one third to the external costs of agriculture. Additionally, the high rate of human intake of animal proteins and lipids has adversely affected the health of the country's population. Fundamental corrections in German farm policy appear inevitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号