首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
S Vriz  M Méchali 《FEBS letters》1989,251(1-2):201-206
We have characterized the complete sequence of two c-myc cDNAs from the amphibian Xenopus laevis, and could thus compare the 3'-non-coding sequences of 7 myc cDNAs from 6 species spread over 350 million years of evolution. Although the size of these sequences is heterogeneous, we identified three completely conserved sequences of 10, 11 and 12 contiguous nucleotides. We observed that two of these elements may be contained in conserved stem-loop structures previously implicated in mRNA turnover. The length of these motifs, their existence in conserved predicted structures, and their presence in regulated eukaryote mRNA with a frequency greater than predicted by chance, suggest that they are functionally important.  相似文献   

5.
6.
Owing to the degeneracy of the genetic code, protein-coding regions of mRNA sequences can harbour more than only amino acid information. We search the mRNA sequences of 11 human protein-coding genes for evolutionarily conserved secondary structure elements using RNA-Decoder, a comparative secondary structure prediction program that is capable of explicitly taking the known protein-coding context of the mRNA sequences into account. We detect well-defined, conserved RNA secondary structure elements in the coding regions of the mRNA sequences and show that base-paired codons strongly correlate with sparse codons. We also investigate the role of repetitive elements in the formation of secondary structure and explain the use of alternate start codons in the caveolin-1 gene by a conserved secondary structure element overlapping the nominal start codon. We discuss the functional roles of our novel findings in regulating the gene expression on mRNA level. We also investigate the role of secondary structure on the correct splicing of the human CFTR gene. We study the wild-type version of the pre-mRNA as well as 29 variants with synonymous mutations in exon 12. By comparing our predicted secondary structures to the experimentally determined splicing efficiencies, we find with weak statistical significance that pre-mRNAs with high-splicing efficiencies have different predicted secondary structures than pre-mRNAs with low-splicing efficiencies.  相似文献   

7.
8.
Five independent clones containing the natural chicken ovomucoid gene have been isolated from a chicken gene library. One of these clones, CL21, contains the complete ovomucoid gene and includes more than 3 kb of DNA sequences flanking both termini of the gene. Restriction endonuclease mapping, electron microscopy and direct DNA sequencing analyses of this clone have revealed that the ovomucoid gene is 5.6 kb long and codes for a messenger RNA of 821 nucleotides. The structural gene sequence coding Ifor the mature messenger RNA is split into at least eight segments by a minimum of seven intervening sequences of various sizes. The shortest structural gene segment is only 20 nucleotides long. All seven intervening sequences are located within the peptide coding region of the gene, and the sequences at the 5' and 3' untranslated regions of the mRNA are not interrupted by intervening sequences. The DNA sequences of the regions flanking the 5' and 3' termini of the gene have been determined. Thirty nucleotides before the start of the messenger RNA coding sequence is the heptanucleotide TATATAT, which is also present in a similar location relative to the chicken ovalbumin gene and other unique sequence eucaryotic genes. This sequence resembles that of the Pribnow box in procaryotic genes where a promoter function has been implicated. Seven nucleotides past the 3' end of the gene is the tetranucleotide TTGT, a sequence found to be present at identical locations as either TTTT or TTGT in other eucaryotic genes that have been sequenced. These conserved DNA sequences flanking eucaryotic genes may serve some regulator function in the expression of these genes.  相似文献   

9.
10.
We have isolated and characterized genomic DNA clones for the human and chicken homologues of the mouse En-1 and En-2 genes and determined the genomic structure and predicted protein sequences of both En genes in all three species. Comparison of these vertebrate En sequences with the Xenopus En-2 [Hemmati-Brivanlou et al., 1991) and invertebrate engrailed-like genes showed that the two previously identified highly conserved regions within the En protein ]reviewed in Joyner and Hanks, 1991] can be divided into five distinct subregions, designated EH1 to EH5. Sequences 5' and 3' to the predicted coding regions of the vertebrate En genes were also analyzed in an attempt to identify cis-acting DNA sequences important for the regulation of En gene expression. Considerable sequence similarity was found between the mouse and human homologues both within the putative 5' and 3' untranslated as well as 5' flanking regions. Between the mouse and Xenopus En-2 genes, shorter stretches of sequence similarity were found within the 3' untranslated region. The 5' untranslated regions of the mouse, chicken and Xenopus En-2 genes, however, showed no similarly conserved stretches. In a preliminary analysis of the expression pattern of the human En genes, En-2 protein and RNA were detected in the embryonic and adult cerebellum respectively and not in other tissues tested. These patterns are analogous to those seen in other vertebrates. Taken together these results further strengthen the suggestion that En gene function and regulation has been conserved throughout vertebrate evolution and, along with the five highly conserved regions within the En protein, raise an interesting question about the presence of conserved genetic pathways.  相似文献   

11.
12.
In both prokaryotes and eukaryotes, nonsense mutations in a gene can enhance the decay rate or reduce the abundance of the mRNA transcribed from that gene, and we call this process nonsense-mediated mRNA decay. We have been investigating the cis-acting sequences involved in this decay pathway. Previous experiments have demonstrated that, in addition to a nonsense codon, specific sequences 3' of a nonsense mutation, which have been defined as downstream elements, are required for mRNA destabilization. The results presented here identify a sequence motif (TGYYGATGYYYYY, where Y stands for either T or C) that can predict regions in genes that, when positioned 3' of a nonsense codon, promote rapid decay of its mRNA. Sequences harboring two copies of the motif from five regions in the PGK1, ADE3, and HIS4 genes were able to function as downstream elements. In addition, four copies of this motif can function as an independent downstream element. The sequences flanking the motif played a more significant role in modulating its activity when fewer copies of the sequence motif were present. Our results indicate the sequences 5' of the motif can modulate its activity by maintaining a certain distance between the sequence motif and the termination codon. We also suggest that the sequences 3' of the motif modulate the activity of the downstream element by forming RNA secondary structures. Consistent with this view, a stem-loop structure positioned 3' of the sequence motif can enhance the activity of the downstream element. This sequence motif is one of the few elements that have been identified that can predict regions in genes that can be involved in mRNA turnover. The role of these sequences in mRNA decay is discussed.  相似文献   

13.
To identify potential transactivators of pdx-1, we sequenced approximately 4.5 kilobases of the 5' promoter region of the human and chicken homologs, assuming that sequences conserved with the mouse gene would contain critical cis-regulatory elements. The sequences associated with hypersensitive site 1 (HSS1) represented the principal area of homology within which three conserved subdomains were apparent: area I (-2694 to -2561 base pairs (bp)), area II (-2139 to -1958 bp), and area III (-1879 to -1799 bp). The identities between the mouse and chicken/human genes are very high, ranging from 78 to 89%, although only areas I and III are present within this region in chicken. Pancreatic beta cell-selective expression was shown to be controlled by mouse and human area I or area II, but not area III, from an analysis of pdx-1-driven reporter activity in transfected beta- and non-beta cells. Mutational and functional analyses of conserved hepatic nuclear factor 3 (HNF3)-like sites located within area I and area II demonstrated that activation by these regions was mediated by HNF3beta. To determine if a similar regulatory relationship might exist within the context of the endogenous gene, pdx-1 expression was measured in embryonic stem cells in which one or both alleles of HNF3beta were inactivated. pdx-1 mRNA levels induced upon differentiation to embryoid bodies were down-regulated in homozygous null HNF3beta cells. Together, these results suggest that the conserved sequences represented by areas I and II define the binding sites for factors such as HNF3beta, which control islet beta cell-selective expression of the pdx-1 gene.  相似文献   

14.
15.
《Gene》1998,206(2):195-208
We have cloned cDNA for the chicken homologues of human CLIP-170 and Restin and characterized expression of chicken CLIP-170 and Restin messages in a variety of chicken tissues. Chicken CLIP-170 and Restin, like the human homologues, differ only in a stretch of 35 amino acids present in Restin but missing from CLIP-170. This Restin-specific insert is perfectly conserved between the chicken and human sequences at both the protein and nucleotide level and contributes an additional five heptads to one of the heptad repeat regions in the central α-helical coiled-coil rod domain. Other highly conserved chicken and human CLIP-170/Restin regions confirm the importance of certain protein domains as crucial for protein function, including two CAP-Gly microtubule-binding motifs in the N-terminal globular head domain and two CCHC metal-binding motifs in the C-terminal globular tail domain. We have used Southern DNA blot analysis and PCR amplification of exon–intron junctions of chicken genomic DNA to confirm that CLIP-170 and Restin are isoforms encoded by the same gene. Semiquantitative RT-PCR analysis of CLIP-170 and Restin mRNA expression revealed expression of both isoforms in a variety of chicken tissues but in different ratios. In the tissues tested, except brain, the message for CLIP-170 was more abundant than that for Restin. Comparison of the levels of CLIP-170 and Restin messages in RNA from chicken and human intestinal epithelial cells revealed remarkably similar ratios in the two species. Our data suggest that expression of CLIP-170 and Restin is differentially regulated and that the two isoforms have distinct functions in a wide variety of cells.  相似文献   

16.
17.
J B Dodgson  D L Browne  A J Black 《Gene》1988,63(2):287-295
A cDNA clone coding for the chicken high-mobility group 14 (HMG-14) mRNA has been isolated from a chicken-liver cDNA library by screening with two synthetic oligodeoxynucleotide pools whose sequences were derived from the partial amino acid sequence of the HMG-14 protein. A chicken HMG-17 cDNA clone was also isolated in a similar fashion. Comparison of the two chicken HMG cDNA clones to the corresponding human cDNA sequences shows that chicken and human HMG-14 mRNAs and polypeptides are considerably less similar than are the corresponding HMG-17 sequences. In fact, the chicken HMG-14 is almost as similar to the chicken HMG-17 in amino acid sequence as it is to mammalian HMG-14 polypeptides. HMG-14 and HMG-17 mRNAs seem to contain a conserved sequence element in their 3'-untranslated regions whose function is at present unknown. The chicken HMG-14 and HMG-17 genes, in contrast to their mammalian counterparts, appear to exist as single-copy sequences in the chicken genome, although there appear to exist one or more additional sequences which partially hybridize to HMG-14 cDNA. Chicken HMG-14 mRNA, about 950 nucleotides in length, was detected in chicken liver RNA but was below our detection limits in reticulocyte RNA.  相似文献   

18.
The spectrins are a family of widely distributed filamentous proteins. In association with actin, spectrins form a supporting and organizing scaffold for cell membranes. Using antibodies specific for human brain alpha-spectrin (alpha-fodrin), we have cloned a rat brain alpha-spectrin cDNA from an expression library. Several closely related human clones were also isolated by hybridization. Comparison of sequences of these and other overlapping nonerythroid and erythroid alpha-spectrin genes demonstrated that the nonerythroid genes are strictly conserved across species, while the mammalian erythroid genes have diverged rapidly. Peptide sequences deduced from these cDNAs revealed that the nonerythroid alpha-spectrin chain, like the erythroid spectrin, is composed of multiple 106-amino-acid repeating units, with the characteristic invariant tryptophan as well as other charged and hydrophobic residues in conserved locations. However, the carboxy-terminal sequence varies markedly from this internal repeat pattern and may represent a specialized functional site. The nonerythroid alpha-spectrin gene was mapped to human chromosome 9, in contrast to the erythroid alpha-spectrin gene, which has previously been assigned to a locus on chromosome 1.  相似文献   

19.
Isolation and characterization of the rat proenkephalin gene   总被引:14,自引:0,他引:14  
The rat proenkephalin gene has been isolated by molecular cloning and characterized by DNA-sequence analysis. The gene exhibits a structural organization similar to that of the human gene. The nucleotide sequence encoding the biologically active opioid peptides which are generated from the proenkephalin precursor as well as the 3' untranslated region of the mRNA are found on a large exon at the 3' end of the gene (Exon III). The nucleotide sequence encoding the N terminus of the mature protein and its signal peptide are located on Exon II while Exon I encodes the 5' untranslated region of the mRNA. The nucleotide sequence of these exons and their flanking regions has been determined and compared to the human proenkephalin gene. Analysis of the nucleotide sequence homology between the human and rat proenkephalin gene reveals the presence of highly conserved regions within both the coding and noncoding portions of the genes. Enkephalin-coding sequences as well as 5' flanking sequences appear to be the most highly conserved. The importance and possible function of these sequences are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号