首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PP2C是一类丝氨酸/苏氨酸残基蛋白磷酸酶,在高等植物ABA信号途径中起着重要的作用。为阐明巴西橡胶树中PP2C基因的结构与功能,本研究通过生物信息学方法,从橡胶树转录组数据库中鉴定并获得6个PP2C家族基因,均含有PP2CD、F1和F2亚族。通过qRT-PCR技术对6个PP2C家族基因进行了干旱处理下的差异表达分析,发现6个基因都不同程度上响应橡胶树干旱胁迫。本研究为探究PP2C基因在橡胶树抗干旱反应机制提供了理论依据。  相似文献   

2.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

3.
The protein serine/threonine phosphatase (PP) type 2A family consists of three members: PP2A, PP4, and PP6. Specific rabbit and sheep antibodies corresponding to each catalytic subunit, as well as a rabbit antibody recognizing all three subunits, were utilized to examine the expression of these enzymes in select rat tissue extracts. PP2A, PP4, and PP6 catalytic subunits (PP2A(C), PP4(C), and PP6(C), respectively) were detected in all rat tissue extracts examined and exhibited some differences in their levels of expression. The expression of alpha4, an interacting protein for PP2A family members that may function downstream of the target of rapamycin (Tor), was also examined using specific alpha4 sheep antibodies. Like the phosphatase catalytic subunits, alpha4 was ubiquitously expressed with particularly high levels in the brain and thymus. All three PP2A family members, but not alpha4, bound to the phosphatase affinity resin microcystin-Sepharose. The phosphatase catalytic subunits were purified to apparent homogeneity (PP2A(C) and PP4(C)) or near homogeneity (PP6(C)) from bovine testes soluble extracts following ethanol precipitation and protein extraction. In contrast to PP2A(C), PP4(C) and PP6(C) exhibited relatively low phosphatase activity towards several substrates. Purified PP2A(C) and native PP2A in cellular extracts bound to GST-alpha4, and co-immunoprecipitated with endogenous alpha4 and ectopically expressed myc-tagged alpha4. The interaction of PP2A(C) with alpha4 was unaffected by rapamycin treatment of mammalian cells; however, protein serine/threonine phosphatase inhibitors such as okadaic acid and microcystin-LR disrupted the alpha4/PP2A complex. Together, these findings increase our understanding of the biochemistry of alpha4/phosphatase complexes and suggest that the alpha4 binding site within PP2A may include the phosphatase catalytic domain.  相似文献   

4.
5.
Protein phosphorylation and dephosphorylation are major regulatory mechanisms that cells use to transmit signals from their extracellular environment to the interior. Up to now, two structurally distinct groups of ser/thr phos-phatases are known of: the PP1/PP2A family and the PP2C family. Here, we focus our efforts to reveal the functions of the PP2C family in rice. It has been known that PP2C has diverse functions related to developments and stress responses. We have obtained a rice EST clone, OsPP2C4, that contained the highly conserved PP2C motifs. RNA gel-blot analysis showed that OsPP2C4 was expressed highly in panicles, while it was expressed weakly in seedling leaves, seedling roots, and mature leaves. Assay of the PP2C enzyme activity with a substrate, para-nitrophenyl phosphate, showed that OsPP2C4 encoded an active PP2C. Transgenic plants expressing the antisense construct of this clone were generated to study the functional roles of the PP2C clone in rice.  相似文献   

6.
The reversible protein phosphorylation on serine or threonine residues that precede proline (pSer/Thr-Pro) is a key signaling mechanism for the control of various cellular processes, including cell division. The pSer/Thr-Pro moiety in peptides exists in the two completely distinct cis and trans conformations whose conversion is catalyzed specifically by the essential prolyl isomerase Pin1. Previous results suggest that Pin1 might regulate the conformation and dephosphorylation of its substrates. However, it is not known whether phosphorylation-dependent prolyl isomerization occurs in a native protein and/or affects dephosphorylation of pSer/Thr-Pro motifs. Here we show that the major Pro-directed phosphatase PP2A is conformation-specific and effectively dephosphorylates only the trans pSer/Thr-Pro isomer. Furthermore, Pin1 catalyzes prolyl isomerization of specific pSer/Thr-Pro motifs both in Cdc25C and tau to facilitate their dephosphorylation by PP2A. Moreover, Pin1 and PP2A show reciprocal genetic interactions, and prolyl isomerase activity of Pin1 is essential for cell division in vivo. Thus, phosphorylation-specific prolyl isomerization catalyzed by Pin1 is a novel mechanism essential for regulating dephosphorylation of certain pSer/Thr-Pro motifs.  相似文献   

7.
Members of the protein phosphatase 2C (PP2C) superfamily are Mg2+/Mn2+-dependent serine/threonine phosphatases, which are essential for regulation of cell cycle and stress signaling pathways in cells. In this study, a comprehensive genomic analysis of all available metazoan PP2C sequences was conducted. The phylogeny of PP2C was reconstructed, revealing the existence of 15 vertebrate families which arose following a series of gene duplication events. Relative dating of these duplications showed that they occurred in two active periods: before the divergence of bilaterians and before vertebrate diversification. PP2C families which duplicated during the first period take part in different signaling pathways, whereas PP2C families which diverged in the second period display tissue expression differences yet participate in similar signaling pathways. These differences were found to involve variation of expression in tissues which show higher complexity in vertebrates, such as skeletal muscle and the nervous system. Further analysis was performed with the aim of identifying the functional domains of PP2C. The conservation pattern across the entire PP2C superfamily revealed an extensive domain of more than 50 amino acids which is highly conserved throughout all PP2C members. Several insertion or deletion events were found which may have led to the specialization of each PP2C family. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Hector Musto]  相似文献   

8.
9.
The reversible phosphorylation of proteins controlled by protein kinases and protein phosphatases is a major mechanism that regulates a wide variety of cellular processes. In contrast to C. elegans, recent studies in mammalian cells have highlighted a major role of serine/threonine protein phosphorylation in apoptosis. To illustrate the importance of dephosphorylation processes in apoptosis, this review will focus on recent studies suggesting that the interaction of the serine/threonine protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) with certain regulators of the Bcl-2 family is critically involved in the control of apoptosis.  相似文献   

10.
11.
Protein phosphatase 2A (PP2A) is a family of multifunctional serine/threonine phosphatases all composed of a catalytic C, a structural A, and a regulatory B subunit. Assembly of the complex with the appropriate B subunit forms the key to the functional specificity and regulation of PP2A. Emerging evidence suggests a crucial role for methylation and phosphorylation of the PP2A C subunit in this process. In this study, we show that PP2A C subunit methylation was not absolutely required for binding the PR61/B' and PR72/B' subunit families, whereas binding of the PR55/B subunit family was determined by methylation and the nature of the C-terminal amino acid side chain. Moreover mutation of the phosphorylatable Tyr(307) or Thr(304) residues differentially affected binding of distinct B subunit family members. Down-regulation of the PP2A methyltransferase LCMT1 by RNA interference gradually reduced the cellular amount of methylated C subunit and induced a dynamic redistribution of the remaining methylated PP2A(C) between different PP2A trimers consistent with their methylation requirements. Persistent knockdown of LCMT1 eventually resulted in specific degradation of the PR55/B subunit and apoptotic cell death. Together these results establish a crucial foundation for understanding PP2A regulatory subunit selection.  相似文献   

12.
13.
Protein phosphatase 2A (PP2A) is a multifunctional serine/threonine phosphatase that is critical to many cellular processes including cell cycle regulation and signal transduction. PP2A is a heterotrimer containing a structural (A) and catalytic (C) subunit, associated with one variable regulatory or targeting B-type subunit, of which three families have been described to date (B/PR55, B'/PR61, and B"/PR72). We identified two functional and highly conserved Ca(2+)-binding EF-hand motifs in human B"/PR72 (denoted EF1 and EF2), demonstrating for the first time the ability of Ca(2+) to interact directly with and regulate PP2A. EF1 and EF2 apparently bind Ca(2+) with different affinities. Ca(2+) induces a significant conformational change, which is dependent on the integrity of the motifs. We have further evaluated the effects of Ca(2+) on subunit composition, subcellular targeting, catalytic activity, and function during the cell cycle of a PR72-containing PP2A trimer (PP2A(T72)) by site-directed mutagenesis of either or both motifs. The results suggest that integrity of EF2 is required for A/PR65 subunit interaction and proper nuclear targeting of PR72, whereas EF1 might mediate the effects of Ca(2+) on PP2A(T72) activity in vitro and is at least partially required for the ability of PR72 to alter cell cycle progression upon forced expression.  相似文献   

14.
Yamaguchi H  Durell SR  Feng H  Bai Y  Anderson CW  Appella E 《Biochemistry》2006,45(44):13193-13202
The wild-type p53-induced phosphatase, Wip1 (PP2Cdelta or PPM1D) is a member of the protein phosphatase 2C (PP2C) family and functions as a negative regulator of the p38 MAP kinase-p53 signaling pathway. PPM1D is amplified or Wip1 is overexpressed in several human cancers, and it acts as a weak oncogene. Although inhibition of Wip1 may have therapeutic value, no specific inhibitors are available. In this study, we designed phosphopeptide inhibitors for Wip1 on the basis of its optimal substrate sequence. We found that phosphoserine-containing diphosphorylated peptides with the sequence pSXpY inhibited Wip1 phosphatase activity, whereas phosphothreonine-containing peptides with the sequence pTXpY were physiological substrates. Moreover, the X residue in the pSXpY sequence modulated inhibitor activity, and beta-branched amino acid-substituted (Ile or Val) phosphopeptides showed high inhibitory potencies. A thioether cyclic phosphopeptide c(MpSIpYVA) had a K(i) <1.0 microM. Two serine/threonine phosphatases, PP2Calpha and PP2A, were not significantly inhibited by the cyclic phosphopeptide with a nonhydrolyzable phosphoserine mimetic. A homology model of Wip1 bound to a cyclic phosphopeptide and site-directed mutagenesis helped to identify residues important for Wip1 inhibitor selectivity among the PP2C family. These results provide the first proof of concept of a specific inhibitor of the catalytic site of Wip1 and should be useful for developing potential anti-cancer drugs.  相似文献   

15.
16.
Phosphorylation by cAMP-dependent protein kinase (PKA) regulates a vast number of cellular functions. An important target for PKA in brain and heart is the class C L-type Ca(2+) channel (Ca(v)1.2). PKA phosphorylates serine 1928 in the central, pore-forming alpha(1C) subunit of this channel. Regulation of channel activity by PKA requires a proper balance between phosphorylation and dephosphorylation. For fast and specific signaling, PKA is recruited to this channel by an protein kinase A anchor protein (Davare, M. A., Dong, F., Rubin, C. S., and Hell, J. W. (1999) J. Biol. Chem. 274, 30280-30287). A phosphatase may be associated with the channel to effectively balance serine 1928 phosphorylation by channel-bound PKA. Dephosphorylation of this site is mediated by a serine/threonine phosphatase that is inhibited by okadaic acid and microcystin. We show that immunoprecipitation of the channel complex from rat brain results in coprecipitation of PP2A. Stoichiometric analysis indicates that about 80% of the channel complexes contain PP2A. PP2A directly and stably binds to the C-terminal 557 amino acids of alpha(1C). This interaction does not depend on serine 1928 phosphorylation and is not altered by PP2A catalytic site inhibitors. These results indicate that the PP2A-alpha(1C) interaction constitutively recruits PP2A to the channel complex rather than being a transient substrate-catalytic site interaction. Functional assays with the immunoisolated class C channel complex showed that channel-associated PP2A effectively reverses serine 1928 phosphorylation by endogenous PKA. Our findings demonstrate that both PKA and PP2A are integral components of the class C L-type Ca(2+) channel that determine the phosphorylation level of serine 1928 and thereby channel activity.  相似文献   

17.
Okadaic acid is a potent inhibitor of select serine/threonine protein phosphatases. The importance of the C28-C38 hydrophobic domain of okadaic acid for inhibition of PP1 and PP2A was investigated. The hydrophobic domain is required but not sufficient for potent inhibition, and it also contributes to differential inhibition between PP1 and PP2A.  相似文献   

18.
Protein phosphorylation, regulated by protein kinases and protein phosphatases, is crucial for protein structure and function in eukaryotic organisms. Type 2C protein phosphatase (PP2C) belongs to the serine/threonine phosphatase family and its activities require the presence of a divalent magnesium or manganese ion. In the present study, a potential PP2C phosphatase (SjPtc1) was identified in Schistosoma japonicum. The SjPTC1 gene was found to be highly expressed in adult worms. A recombinant SjPtc1 protein showed typical PP2C phosphatase activity. Heterologous SjPTC1 expression reversed the sensitivity of yeast ptc1 null mutants toward H2O2, ZnCl2, cisplatin, and rapamycin. Collectively, the results suggest that SjPtc1 may take part in the regulation of cellular responses to oxidative stress, DNA damage stress, and the TOR (target of rapamycin) signaling pathway.  相似文献   

19.
The synthetic phosphopeptide RRATpVA was found to be the most effective substrate for protein phosphatase 2C (PP2C) so far identified. Replacement of phosphothreonine by phosphoserine decreased activity over 20-fold and a striking preference for phosphothreonine was also observed with two other substrates (RRSTpTpVA and casein) that were phosphorylated on both serine and threonine. Replacement of the C-terminal valine in RRATpVA by proline abolished dephosphorylation, while exchanging the N-terminal alanine by proline had no effect. The preference for phosphothreonine and the effect of proline are similar to protein phosphatase 2A (PP2A). However, the peptide RRREEETpEEEAA, an excellent substrate for PP2A, was not dephosphorylated by PP2C, and substitution of the C-terminal valine in RRATpVA by glutamic acid reduced the rate of dephosphorylation by PP2C over 10-fold, without affecting dephosphorylation by PP2A. Addition of two extra N-terminal arginine residues to RRASpVA increased PP2A catalysed dephosphorylation 4- to 5-fold, without altering dephosphorylation by PP2C. These results represent the first study of the specificity of PP2C using synthetic peptides, and strengthen the view that this approach may lead to the development of more effective and specific substrates for the serine/threonine-specific protein phosphatases.  相似文献   

20.
Reversible phosphorylation modulates a cells’ susceptibility to apoptosis. The phosphorylation status of BAD, a member of the Bcl-2 protein family, is an important checkpoint governing life-or-death decisions: Phosphorylation of serine residues 112, 136 and 155 on BAD prevents apoptosis. Here we report that BAD is a substrate for PP2C. Ser155 is involved in heterodimerization with Bcl-XL. We could demonstrate that PP1, PP2A and PP2C act on this site in vitro. However, only PP2C gives priority to P-Ser155 compared to P-Ser112 and P-Ser136 on BAD. The results indicate that PP2C is an additional factor triggering the pro-apoptotic function of BAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号