首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DSCAM, a conserved gene involved in neuronal differentiation, is a member of the Ig superfamily of cell adhesion molecules. Herein, we report the functional characterization of a human DSCAM (Down syndrome cell adhesion molecule) paralogue, DSCAML1, located on chromosome 11q23. The deduced DSCAML1 protein contains 10 Ig domains, six fibronectin-III domains, and an intracellular domain, all of which are structurally identical to DSCAM. When compared to DSCAM, DSCAML1 protein showed 64% identity to the extracellular domain and 45% identity to the cytoplasmic domain. In the mouse brain, DSCAML1 is predominantly expressed in Purkinje cells of the cerebellum, granule cells of the dentate gyrus, and in neurons of the cerebral cortex and olfactory bulb. Biochemical and immunofluorescence analyses indicated that DSCAML1 is a cell surface molecule that targets axonal features in differentiated PC12 cells. DSCAML1 exhibits homophilic binding activity that does not require divalent cations. Based on its structural and functional properties and similarities to DSCAM, we suggest that DSCAML1 may be involved in formation and maintenance of neural networks. The chromosomal locus for DSCAML1 makes it an ideal candidate for neuronal disorders (such as Gilles de la Tourette and Jacobsen syndromes) that have been mapped on 11q23.  相似文献   

2.
3.
Transendothelial leukocyte migration is a major aspect of the innate immune response. It is essential in repair and regeneration of damaged tissues and is regulated by multiple cell adhesion molecules (CAMs) including members of the immunoglobulin (Ig) superfamily. Activated leukocyte cell adhesion molecule (ALCAM/CD166) is an Ig CAM expressed by activated monocytes and endothelial cells. Hitherto, the functional relevance of ALCAM expression by endothelial cells and activated monocytes remained unknown. In this report, we demonstrate soluble recombinant human ALCAM significantly inhibited the rate of transendothelial migration of monocyte cell lines. Direct involvement of ALCAM in transendothelial migration was evident from the robust inhibition of this process by ALCAM blocking antibodies. However, soluble recombinant ALCAM had no impact on monocyte migration or adhesion to endothelium. Localization of ALCAM specifically at cell-cell junctions in endothelial cells supported its role in transendothelial migration. This study is the first to localize ALCAM to endothelial cell junctions and demonstrate a functional relevance for co-expression of ALCAM by activated monocytes and endothelial cells.  相似文献   

4.
Angiogenesis-the growth of new blood vessels from preexisting vessels-is an important physiological process and is considered to play a key role in tumor growth and metastasis. We identified the immunoglobulin-containing and proline-rich receptor-1 (IGPR-1, also called TMIGD2) gene as a novel cell adhesion receptor that is expressed in various human organs and tissues, mainly in cells with epithelium and endothelium origins. IGPR-1 regulates cellular morphology, homophilic cell aggregation, and cell-cell interaction. IGPR-1 activity also modulates actin stress fiber formation and focal adhesion and reduces cell migration. Silencing of expression of IGPR-1 by small interfering RNA (siRNA) and by ectopic overexpression in endothelial cells showed that IGPR-1 regulates capillary tube formation in vitro, and B16F melanoma cells engineered to express IGPR-1 displayed extensive angiogenesis in the mouse Matrigel angiogenesis model. Moreover, IGPR-1, through its proline-rich cytoplasmic domain, associates with multiple Src homology 3 (SH3)-containing signaling proteins, including SH3 protein interacting with Nck (SPIN90/WISH), bullous pemphigoid antigen-1, and calcium channel β2. Silencing of expression of SPIN90/WISH by siRNA in endothelial cells showed that SPIN90/WISH is required for capillary tube formation. These features of IGPR-1 suggest that IGPR-1 is a novel receptor that plays an important role in cell-cell interaction, cell migration, and angiogenesis.  相似文献   

5.
Ksp- and LI-cadherin are structurally homologous proteins coexpressed with E-cadherin in renal and intestinal epithelia, respectively. Whereas LI-cadherin has been shown to mediate Ca2+-dependent homotypic cell-cell adhesion independent of stable interactions with the cytoskeleton, little is known about the physiological role of Ksp-cadherin. To analyze its potential adhesive and morphoregulatory functions, we expressed murine Ksp-cadherin in CHO cells. In this report, we show that Ksp-cadherin induces homotypic and Ca2+-dependent cell-cell adhesion that can be specifically blocked with antibodies raised against the cadherin repeats EC1 and EC2. Ksp-cadherin mediates about the same quantitative adhesive effect (aggregation index) as LI- and E-cadherin. However, the cellular phenotype induced by Ksp-cadherin resembles more closely that of LI- than E-cadherin. This could reflect our observation, that Ksp-cadherin, as well as LI-cadherin, does not directly interact with beta-catenin. In conclusion, both cadherins are thus not only structurally but also functionally related and may share other functions within their respective epithelia.  相似文献   

6.
The life cycle of calicivirus is not fully understood because most of the viruses cannot be propagated in tissue culture cells. We studied the mechanism of calicivirus entry into cells using feline calicivirus (FCV), a cultivable calicivirus. From the cDNA library of Crandell-Rees feline kidney (CRFK) cells, feline junctional adhesion molecule 1 (JAM-1), an immunoglobulin-like protein present in tight junctions, was identified as a cellular-binding molecule of the FCV F4 strain, a prototype strain in Japan. Feline JAM-1 expression in nonpermissive hamster lung cells led to binding and infection by F4 and all other strains tested. An anti-feline JAM-1 antibody reduced the binding of FCV to permissive CRFK cells and strongly suppressed the cytopathic effect (CPE) and FCV progeny production in infected cells. Some strains of FCV, such as F4 and F25, have the ability to replicate in Vero cells. We found that regardless of replication ability, FCV bound to Vero and 293T cells via simian and human JAM-1, respectively. In Vero cells, an anti-human JAM-1 antibody inhibited binding, CPE, and progeny production by F4 and F25. In addition, feline JAM-1 expression permitted FCV infection in 293T cells. Taken together, our results demonstrate that feline JAM-1 is a functional receptor for FCV, simian JAM-1 also functions as a receptor for some strains of FCV, and the interaction between FCV and JAM-1 molecules may be a determinant of viral tropism. This is the first report concerning a functional receptor for the viruses in the family Caliciviridae.  相似文献   

7.
8.
Despite their significance inwound healing, little is known about the molecular determinants ofcell-to-cell adhesion and gap junctional communication in fibroblasts.We characterized intercellular adherens junctions and gap junctions inhuman gingival fibroblasts (HGFs) using a novel model. Calcein-labeleddonor cells in suspension were added onto an established, Texas red dextran (10 kDa)-labeled acceptor cell monolayer. Cell-to-cell adhesionrequired Ca2+ and was >30-fold stronger thancell-to-fibronectin adhesion at 15 min. Electron micrographs showedrapid formation of adherens junction-like structures at ~15 min thatmatured by ~2-3 h; distinct gap junctional complexes wereevident by ~3 h. Immunoblotting showed that HGF expressed -cateninand that cadherins and connexin43 were recruited to theTriton-insoluble cytoskeletal fraction in confluent cultures. Confocalmicroscopy localized the same molecules to intercellular contacts ofacceptor and donor cells. There was extensive calcein dye transfer in acohort of Texas red dextran-labeled cells, but this was almostcompletely abolished by the gap junction inhibitor -glycyrrhetinicacid and the connexin43 mimetic peptide GAP 27. Thisdonor-acceptor cell model allows large numbers (>105) ofcells to form synchronous cell-to-cell contacts, thereby enabling thesimultaneous functional and molecular studies of adherens junctions andgap junctions.

  相似文献   

9.
Endothelial leukocyte adhesion molecule 1 (ELAM1) is a leukocyte adhesion molecule induced on human venular endothelium in vitro and in vivo by inflammatory stimuli. A truncated cDNA for ELAM1 has been constructed, stably expressed in Chinese hamster ovary cells, and the secreted recombinant soluble form of ELAM1 (rsELAM1) purified to homogeneity by immunoaffinity chromatography. rsELAM1, when immobilized on plastic, is fully functional as an adhesion protein, and selectively binds only cells known to bind cell-surface ELAM1 expressed on human endothelial cells, including the myelomonocytic cell line HL60 and the colon carcinoma cell line HT29. Immobilized rsELAM1 also binds human PMN, monocytes, NK cells, and T cells. T cell subset analyses indicate preferential binding of CD4+ T memory cells. However, rsELAM1 is only a weak inhibitor of ELAM1-mediated adhesion. rsELAM1 should prove valuable for the further study of the role of ELAM1 expressed on the vascular wall during the inflammatory response.  相似文献   

10.
《The Journal of cell biology》1995,131(4):1067-1081
Neural cell adhesion molecules of the immunoglobulin superfamily mediate cellular interactions via homophilic binding to identical molecules and heterophilic binding to other family members or structurally unrelated cell-surface glycoproteins. Here we report on an interaction between axonin-1 and Nr-CAM/Bravo. In search for novel ligands of axonin-1, fluorescent polystyrene microspheres conjugated with axonin-1 were found to bind to peripheral glial cells from dorsal root ganglia. By antibody blockage experiments an axonin-1 receptor on the glial cells was identified as Nr-CAM. The specificity of the interaction was confirmed with binding studies using purified axonin-1 and Nr-CAM. In cultures of dissociated dorsal root ganglia antibodies against axonin-1 and Nr-CAM perturbed the formation of contacts between neurites and peripheral glial cells. Together, these results implicate a binding between axonin-1 of the neuritic and Nr-CAM of the glial cell membrane in the early phase of axon ensheathment in the peripheral nervous system.  相似文献   

11.
Fasciclin I is a membrane-associated glycoprotein that is regionally expressed on a subset of fasciculating axons during neuronal development in insects; it is expressed on apposing cell surfaces, suggesting a role in specific cell adhesion. In this paper we show that Drosophila fasciclin I is a novel homophilic cell adhesion molecule. When the nonadhesive Drosophila S2 cells are transfected with the fasciclin I cDNA, they form aggregates that are blocked by antisera against fasciclin I. When cells expressing fasciclin I are mixed with cells expressing fasciclin III, another Drosophila homophilic adhesion molecule, the mixture sorts into aggregates homogeneous for either fasciclin I- or fasciclin III-expressing cells. The ability of these two novel adhesion molecules to mediate cell sorting in vitro suggests that they might play a similar role during neuronal development.  相似文献   

12.
Circadian (~24 h) rhythms of cellular network plasticity in the central circadian clock, the suprachiasmatic nucleus (SCN), have been described. The neuronal network in the SCN regulates photic resetting of the circadian clock as well as stability of the circadian system during both entrained and constant conditions. EphA4, a cell adhesion molecule regulating synaptic plasticity by controlling connections of neurons and astrocytes, is expressed in the SCN. To address whether EphA4 plays a role in circadian photoreception and influences the neuronal network of the SCN, we have analyzed circadian wheel‐running behavior of EphA4 knockout (EphA4?/?) mice under different light conditions and upon photic resetting, as well as their light‐induced protein response in the SCN. EphA4?/? mice exhibited reduced wheel‐running activity, longer endogenous periods under constant darkness and shorter periods under constant light conditions, suggesting an effect of EphA4 on SCN function. Moreover, EphA4?/? mice exhibited suppressed phase delays of their wheel‐running activity following a light pulse during the beginning of the subjective night (CT15). Accordingly, light‐induced c‐FOS (FBJ murine osteosarcoma viral oncogene homolog) expression was diminished. Our results suggest a circadian role for EphA4 in the SCN neuronal network, affecting the circadian system and contributing to the circadian response to light.  相似文献   

13.
Vascular cell adhesion molecule 1 (VCAM1) is a leukocyte adhesion molecule induced on human endothelium in vitro and in vivo by inflammatory stimuli. A truncated cDNA for VCAM1 was constructed, stably expressed in Chinese Hamster Ovary (CHO) cells, and the secreted recombinant soluble form of VCAM1 (rsVCAM1) purified to homogeneity by immunoaffinity chromatography. Immobilized rsVCAM1 is a functional adhesion protein, and selectively binds only VLA4-expressing cells, including human B and T lymphocytes, NK cells, and certain lymphoblastoid cell lines. T cell subset analyses indicate preferential binding of CD8+ memory cells. rsVCAM1 should prove valuable for the further study of the role of VCAM1 during inflammatory and immune responses in vivo.  相似文献   

14.
This study represents a global survey of the times of the first appearance of the neuron-glia cell adhesion molecule (Ng-CAM) in various regions and on particular cells of the chick embryonic nervous system. Ng-CAM, originally characterized by means of an in vitro binding assay between glial cells and brain membrane vesicles, first appears in development at the surface of early postmitotic neurons. By 3 d in the chick embryo, the first neurons detected by antibodies to Ng-CAM are located in the ventral neural tube; these precursors of motor neurons emit well-stained fibers to the periphery. To identify locations of appearance of Ng-CAM in the peripheral nervous system (PNS), we used a monoclonal antibody called NC-1 that is specific for neural crest cells in early embryos to show the presence of numerous crest cells in the neuritic outgrowth from the neural tube; neither these crest cells nor those in ganglion rudiments bound anti-Ng-CAM antibodies. The earliest neurons in the PNS stained by anti-Ng-CAM appeared by 4 d of development in the cranial ganglia. At later stages and progressively, all the neurons and neurities of the PNS were found to contain Ng-CAM both in vitro and in vivo. Many central nervous system (CNS) neurons also showed Ng-CAM at these later stages, but in the CNS, the molecule was mostly associated with neuronal processes (mainly axons) rather than with cell bodies; this regional distribution at the neuronal cell surface is an example of polarity modulation. In contrast to the neural cell adhesion molecule and the liver cell adhesion molecule, both of which are found very early in derivatives of more than one germ layer, Ng-CAM is expressed only on neurons of the CNS and the PNS during the later epoch of development concerned with neural histogenesis. Ng-CAM is thus a specific differentiation product of neuroectoderm. Ng-CAM was found on developing neurons at approximately the same time that neurofilaments first appear, times at which glial cells are still undergoing differentiation from neuroepithelial precursors. The present findings and those of previous studies suggest that together the neural cell adhesion molecule and Ng-CAM mediate specific cellular interactions during the formation of neuronal networks by means of modulation events that govern their prevalence and polarity on neuronal cell surfaces.  相似文献   

15.
The neuron-glia cell adhesion molecule (Ng-CAM) has been identified in mammalian brain tissue and PC12 pheochromocytoma cells as Mr 200,000 and Mr 230,000 species, respectively. When PC12 cells were treated with nerve growth factor (NGF), the amount of Ng-CAM at the cell surface was increased approximately threefold, whereas the amount of the neural cell adhesion molecule (N-CAM) remained unchanged. An NGF-inducible large external glycoprotein (NILE) has been previously identified by its enhanced expression in NGF-treated PC12 cells. Ng-CAM and NILE are similar in molecular weight, expression during development, and responsiveness to NGF in PC12 cells, suggesting that the two molecules are related. In addition, antibodies to Ng-CAM and NILE cross-reacted and the molecules had similar peptide maps after limited proteolysis. Moreover, antibodies to Ng-CAM inhibited fasciculation of neurites, a functional property shared with NILE. The results show that cell adhesion molecules can respond selectively to growth factors and suggest that NILE is, in fact, mammalian Ng-CAM.  相似文献   

16.
Dystroglycan (DG) plays a pivotal role within the dystrophin-glycoprotein complex (DGC) which represents a major factor for muscle fibre stability upon contraction. It has been shown that many muscular dystrophy phenotypes are caused by mutations of proteins belonging to or being associated with the DGC. Due to its prominent role for muscle stability, the detailed knowledge of DG structural and functional aspects should be considered of primary importance in order to develop new treatments for neuromuscular diseases.  相似文献   

17.
Functional expression of KAL1 gene is critical in the migration of GnRH neurons from the olfactory placode to the hypothalamus in embryogenesis. This gene thus far has not been shown to play a functional role in any other physiological or pathological process either in the developed brain or in peripheral tissues. We show here that KAL1 gene expression is decreased in early stage and increased in later stages of cancers. Screening of colon, lung and ovarian cancer cDNA panels indicated significant decrease in KAL1 expression in comparison to corresponding uninvolved tissues. However, KAL1 expression increased with the progression of cancer from early (I and II) stages to later (III and IV) stages of the cancer. There was a direct correlation between the TGF-β and KAL1 expression in colon cancer cDNA. Using colon cancer cell lines, we showed that TGF-β induces KAL1 gene expression and secretion of anosmin-1 protein (KAL1 coded protein). We further report that hypoxia induces anosmin-1 expression; anosmin-1 protects cancer cells from apoptosis activated by hypoxia and increases cancer cell mobility. Using siRNA technique we found that KAL1 expression following hypoxia is hypoxia-inducible factor (HIF-1) α dependent. Our results suggest that KAL1 gene expression plays an important role in cancer metastasis and protection from apoptosis.  相似文献   

18.
19.
We report here the cloning and characterization of a soybean receptor-like kinase (RLK) gene, designated GmSARK (Glycine max senescence-associated receptor-like kinase), which is involved in regulating leaf senescence. The conceptual protein product of GmSARK contains typical domains of LRR receptor-like kinases: a cytoplasmic domain with all the 11 kinase subdomains, a transmembrane domain and an extracelullar domain containing 9 Leucine-Rich Repeat (LRR) units that may act as a receptor. The expression of GmSARK in soybean leaves was up-regulated in all the three tested senescence systems: senescing cotyledons, dark-induced primary leaf senescence and the natural leaf senescence process after florescence. Furthermore, the RNA interference (RNAi)-mediated knocking-down of GmSARK dramatically retarded soybean leaf senescence. A more complex thylakoid membrane system, higher foliar level of chlorophyll content and a very remarkable delay of senescence-induced disintegration of chloroplast structure were observed in GmSARK-RNAi transgenic leaves. A homolog of maize lethal leaf-spot 1 gene, which has been suggested to encode a key enzyme catalyzing chlorophyll breakdown, was isolated and nominated Gmlls1. The expression level of Gmgtr1 gene, which encodes a key enzyme of chlorophyll synthesis, was also analyzed. It was found that Gmlls1 was up-regulated and Gmgtr1 was down-regulated during senescence in wild-type soybean leaves. However, both of the up-regulation of Gmlls1 and down-regulation of Gmgtr1 were retarded during senescence of GmSARK-RNAi transgenic leaves. In addition, over-expression of the GmSARK gene greatly accelerated the senescence progression of CaMV 35S:GmSARK transgenic plants. Taken together, these results strongly suggested the involvement of this LRR-RLK in regulation of soybean leaf senescence, maybe via regulating chloroplast development and chlorophyll accumulation. Multiple functions of GmSARK besides its regulation of leaf senescence were also discussed. Electronic Supplementary Material Supplementary material is available for this article at Rui Gan, Peng-Li Li and Yuan-Yuan Ma contributed equally to this work.  相似文献   

20.
A monoclonal antibody (mAb), named TE-4F 10, was produced by fusing P3X-Ag8 myeloma cells with splenocytes of BALB/c mice immunized with a rat medullary thymic epithelial cell (TEC) line, (TE-R 2.5), previously established in our Institute. Flow cytometry showed that 85-95% TE-R 2.5 cells expressed the TE-4F10 antigen. The mAb immunoprecipitated a 29 kDa molecule from the TE-R2.5 cell lysate. Immunohistochemical analysis using single and double staining of the thymus with anti-cytokeratin (CK) mAb, showed that TE- 4F10 mAb selectively stains a subpopulation of medullary TEC. Hematopoietic and lymphoid cells were negative. The expression of the TE-4F10 antigen on TE-R 2.5 cells in vitro was significantly upregulated by interleukin 1 (IL-1) and tumor necrosis factor (TNFalpha). Other cytokines IL-4, IL-6, IL-10 and granulocyte - macrophage colony stimulating factor (GM-CSF) showed lesser stimulation on its expression, whereas interferon gamma (IFN) and dexamethasone were without significant effect. The TE-R 2.5 cell line strongly bound and induced apoptosis of a rat / mouse thymocyte heterohybridoma (BWRT8), phenotypically alphabetaTCRhiCD4hiCD8lo. TE-4F10 mAb significantly inhibited binding (40-50%) of both BWRT8 cells and the BWRT8 - MDP.1 subclone to TE-R 2.5 cells. The inhibition was enhanced when TEC were stimulated with IL-1 + TNFalpha. The mAb also significantly blocked apoptosis of BWRT8 but did not modulate cell death of the BWRT8 - MDP.1 subclone, which was resistant to TEC-induced apoptosis. These findings indicate that the TE-4F10 antigen might be selectively involved in adhesion and selection processes in the medullary thymic microenvironment. The mAb of the same characteristics has not been described so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号