首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature, pH, free [Mg(2+)], and ionic strength on the apparent equilibrium constant of arginine kinase (EC 2.7.3.3) was determined. At equilibrium, the apparent K' was defined as [see text] where each reactant represents the sum of all the ionic and metal complex species. The K' at pH 7.0, 1.0 mM free [Mg(2+)], and 0. 25 M ionic strength was 29.91 +/- 0.59, 33.44 +/- 0.46, 35.44 +/- 0. 71, 39.64 +/- 0.74, and 45.19 +/- 0.65 (n = 8) at 40, 33, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy (DeltaH degrees') is -8.19 kJ mol(-1), and the corresponding standard apparent entropy of the reaction (DeltaS degrees') is + 2. 2 J K(-1)mol(-1) in the direction of ATP formation at pH 7.0, free [Mg(2+)] =1.0 mM, ionic strength (I) =0.25 M at 25 degrees C. We further show that the magnitude of transformed Gibbs energy (DeltaG degrees ') of -8.89 kJ mol(-1) is mostly comprised of the enthalpy of the reaction, with 7.4% coming from the entropy TDeltaS degrees' term (+0.66 kJ mol(-1)). Our results are discussed in relation to the thermodynamic properties of its evolutionary successor, creatine kinase.  相似文献   

2.
The effect of temperature on the apparent equilibrium constant of creatine kinase (ATP:creatine N-phosphotransferase (EC 2.7.3.2)) was determined. At equilibrium the apparent K' for the biochemical reaction was defined as [formula: see text] The symbol sigma denotes the sum of all the ionic and metal complex species of the reactant components in M. The K' at pH 7.0, 1.0 mM free Mg2+, and ionic strength of 0.25 M at experimental conditions was 177 +/- 7.0, 217 +/- 11, 255 +/- 10, and 307 +/- 13 (n = 8) at 38, 25, 15, and 5 degrees C, respectively. The standard apparent enthalpy or heat of the reaction at the specified conditions (delta H' degree) was calculated from a van't Hoff plot of log10K' versus 1/T, and found to be -11.93 kJ mol-1 (-2852 cal mol-1) in the direction of ATP formation. The corresponding standard apparent entropy of the reaction (delta S' degree) was +4.70 J K-1 mol-1. The linear function (r2 = 0.99) between log10 K' and 1/K demonstrates that both delta H' degree and delta S' degree are independent of temperature for the creatine kinase reaction, and that delta Cp' degree, the standard apparent heat capacity of products minus reactants in their standard states, is negligible between 5 and 38 degrees C. We further show from our data that the sign and magnitude of the standard apparent Gibbs energy (delta G' degree) of the creatine kinase reaction was comprised mostly of the enthalpy of the reaction, with 11% coming from the entropy T delta S' degree term. The thermodynamic quantities for the following two reference reactions of creatine kinase were also determined. [formula: see text] The delta H degree for Reaction 2 was -16.73 kJ mol-1 (-3998 cal mol-1) and for Reaction 3 was -23.23 kJ mol-1 (-5552 cal mol-1) over the temperature range 5-38 degrees C. The corresponding delta S degree values for the reactions were +110.43 and +83.49 J K-1 mol-1, respectively. Using the delta H' degree of -11.93 kJ mol-1, and one K' value at one temperature, a second K' at a second temperature can be calculated, thus permitting bioenergetic investigations of organs and tissues using the creatine kinase equilibria over the entire physiological temperature range.  相似文献   

3.
Unconjugated bilirubin (UCB) is almost insoluble in water at neutral pH, but appears in normal human gallbladder bile at concentrations up to 35 microM. We therefore determined whether conjugated bile salts could increase the dissolved concentration [( Bt]) of UCB over the pH range 3.0-11.0. Using crystalline UCB, [Bt] was higher with less ordered crystals, with increasing pH and bile salt concentration, and with taurocholate (TC) micelles compared to taurodehydrocholate (TDHC) dimers. Plots of [Bt] verus pH from pH 3.0-9.3 fit the equation, [Bt] = A(1 + K'1/[H]+ + K'1.K'2/[H+]2), where A = [Bt] at pH less than 4.0, and K'1 and K'2 are the two apparent ionization constants of UCB. Estimated pK'1 values in NaCl, TC, and TDHC were 6.8, 6.0, and 5.6, respectively; pK'2 was greater than or equal to 9.3 in each system. Acidification of disodium bilirubinate to pH less than 8.5 produced high, metastable [Bt] in 50 mM TC; this was absent in 0.15 M NaCl, and minor in 50 mM TDHC. In all solutions, maximum [Bt] of 60-65 mM was attained at pH greater than or equal to 10.5. This work helps explain the immense variation among reported [Bt] values, indicates that UCB monoanion predominates at the pH range of bile, and suggests that bile salt monomers, dimers, and micelles enhance the solubility of UCB in bile.  相似文献   

4.
To evaluate the accuracy of pH determination by 31P-NMR, factors which influence the pK value of phosphate were appraised on the basis of the titration of 1 mM phosphate buffer solution. When the method is used for the determination of cytoplasmic pH, ionic strength is the major factor causing shifts of apparent pK (pK') value, and the magnitude of the shift can be predicted from the ionic strength calculated by means of the Debye-Hückel equation. Ions (Na+, K+, Mg2+, and Ca2+) and salivary protein affected the pK' value by 0.1 to 0.3 units in solution with a given ionic strength depending on the species of ion. The form of the titration curve varied with temperature. Based on these results, the value of 6.75 was obtained with the uncertainty of 0.12 for the intracellular pK' of frog muscle at 24 degrees C.  相似文献   

5.
The effect of temperature, pH, and free [Mg(2+)] on the apparent equilibrium constant of pyruvate kinase (phosphoenol transphosphorylase) (EC ) was investigated. The apparent equilibrium constant, K', for the biochemical reaction P-enolpyruvate + ADP = ATP + Pyr was defined as K' = [ATP][Pyr]/[ADP][P-enolpyruvate], where each reactant represents the sum of all the ionic and metal complexed species in M. The K' at pH 7.0, 1.0 mm free Mg(2+) and I of 0.25 m was 3.89 x 10(4) (n = 8) at 25 degrees C. The standard apparent enthalpy (DeltaH' degrees ) for the biochemical reaction was -4.31 kJmol(-1) in the direction of ATP formation. The corresponding standard apparent entropy (DeltaS' degrees ) was +73.4 J K(-1) mol(-1). The DeltaH degrees and DeltaS degrees values for the reference reaction, P-enolpyruvate(3-) + ADP(3-) + H(+) = ATP(4-) + Pyr(1-), were -6.43 kJmol(-1) and +180 J K(-1) mol(-1), respectively (5 to 38 degrees C). We examined further the mass action ratio in rat heart and skeletal muscle at rest and found that the pyruvate kinase reaction in vivo was close to equilibrium i.e. within a factor of about 3 to 6 of K' in the direction of ATP at the same pH, free [Mg(2+)], and T. We conclude that the pyruvate kinase reaction may be reversed under some conditions in vivo, a finding that challenges the long held dogma that the reaction is displaced far from equilibrium.  相似文献   

6.
信阳桃花水母对几种生态因子胁迫的耐受反应   总被引:3,自引:0,他引:3  
在不同温度、盐度、pH等因子胁迫条件下,研究观察了信阳桃花水母(Craspedacusta sowerbyi xinyangensis)的生活状态、形态变化及存活等耐受反应,并测定了信阳桃花水母在不同温度下的耗氧率和最低耐氧能力.结果表明,信阳桃花水母的最适生活温度范围为15 ℃~25 ℃,pH为6.0~8.2.信阳桃花水母对盐度耐受力差,盐度为2时,仅能存活96 h;但具有较强的耐低氧能力,20 ℃时窒息点为026 mg·L-1,平均耗氧量和平均耗氧率随温度的升高而升高.  相似文献   

7.
Tre of the suricates exhibits a marked diurnal rhythm (mean Tre at night 36.3 +/- 0.6 degrees C and 38.3 +/- 0.5 degrees C during the day). Oxygen consumption is lowest at Ta 30-32.5 degrees C (mean 0.365 +/- 0.022 ml O2 g-1 hr-1); this is 42% below the value expected from body mass. At Ta below the TNZ, oxygen uptake rises rapidly, minimal thermal conductance (0.040 ml O2 g-1 h-1 degrees C-1) being 18% above the mass-specific level. Lowest heart rates occur at Ta 30 degrees C (mean 109.6 +/- 9.8 beats min-1) and oxygen pulse is minimal at Ta 30-35 degrees C with 40-45 microliter O2 beat-1. At Ta 15-32.5 degrees C total evaporative water loss is between 0.46-0.63 ml H2O kg-1 hr-1 and increases markedly during heat stress (to a mean of 5.35 ml H2O kg-1 hr-1 at Ta 40 degrees C). This rise of TEWL is mainly attributable to the onset of panting at Ta above 35 degrees C.  相似文献   

8.
The effects of temperature on the salinity tolerance of Mozambique-Wami tilapia hybrids (Oreochromis mossambicus x O. urolepis hornorum) were investigated by transferring 35 g/l, 25 degrees C-acclimated fish to 35, 43, 51 or 60 g/l salinity at 15, 25 or 35 degrees C for 24 h, and by assaying gill tissue for branchial Na(+), K(+)-ATPase activity at the three temperatures after acclimating the fish to 15, 25 or 35 degrees C for 2 weeks. Tilapia survived all salinities at 25 and 35 degrees C; however, at 15 degrees C, mortality was 85.7% and 100% in the 51 g/l and 60 g/l groups, respectively. There was a significant interaction between temperature and salinity, as plasma osmolality, [Na(+)] and [Cl(-)] were significantly increased at 51 and 60 g/l salinity in 35 degrees C water (P<0.001). Additionally, muscle water content was significantly reduced at 43 g/l, 15 degrees C relative to pre-transfer values (P<0.001). Branchial Na(+), K(+)-ATPase activity was reduced at 15 degrees C regardless of acclimation temperature, and 25 degrees C-acclimated gill tissue did not show an increase in activity when assayed at 35 degrees C. Results indicate that the effects of a combined temperature-salinity transfer on plasma osmolality and ion concentrations, as well as muscle water content, are greater than when either challenge is given alone. Additionally, branchial Na(+), K(+)-ATPase activity is altered when assayed at varying temperatures; in the case of 15 degrees C, regardless of acclimation temperature. Our enzyme activity data may indicate the presence of a high temperature isoform of branchial Na(+), K(+)-ATPase enzyme.  相似文献   

9.
Uptake of poliovirus 1 by the blue crab, Callinectes sapidus, was measured to assess the likelihood of contamination by human enteric viruses. Virus was found in all parts of the crab within 2 h after the crab was placed in contaminated artificial seawater. The highest concentrations of virus were found in the hemolymph and digestive tract, but the meat also contained virus. The concentration of virus in the crabs was generally less than in the surrounding water. Changes in salinity did not substantially affect the rate of accumulation. An increase in temperature from 15 to 25 degrees C increased the rates of both uptake and removal. Poliovirus survived up to 6 days in crabs at a temperature of 15 degrees C and a salinity of 10 g/kg. When contaminated crabs were boiled, 99.9% of poliovirus 1, simian rotavirus SA11, and a natural isolate of echovirus 1 were inactivated within 8 min. These data demonstrate that viruses in crabs should not pose a serious health hazard if recommended cooking procedures are used.  相似文献   

10.
马粪海胆对环境变化的耐受性与选择性研究   总被引:3,自引:1,他引:2  
对采自青岛近岸的马粪海胆进行温度、盐度、光强与底质等因子的耐受及选择实验。结果表明,青岛近岸马粪海胆的适温范围约在8-22℃,对温度的选择受驯养水温的影响;属窄盐性种类,适盐范围约在30-35;喜好弱光环境,饥饿状态的选择光强(8-25lx)较非饥饿状态(10-35lx)低;对粗沙砾底质具明显的正选择,而对细沙性底质呈明显的负选择。  相似文献   

11.
A psychrotrophic strain of Arthrobacter agilis, isolated from Antarctic sea ice, grows from 5 degrees C to 40 degrees C and in culture media containing 0-10% (w/v) NaCl. Maximum growth rate occurred at 30-35 degrees C with a drastic decline as the cultivation temperatures diverged. Adaptation to extremes of low temperature may be partially attributed to the production of the C-50 carotenoid bacterioruberin, and its glycosylated derivatives. Lowering of the cultivation temperature resulted in a concomitant increase in carotenoid production, which may contribute to membrane stabilisation at low temperature. Maximum biomass accumulation occurred at 5-30 degrees C with a tenfold reduction at 40 degrees C. Changes in growth rates were minimal in culture media containing 0-2% (w/v) NaCl at 10 degrees C while a gradual decrease in growth rates occurred at higher salinity. Biomass accumulation at different salinity followed a trend similar to that observed with different cultivation temperatures. Maximum biomass accumulation was observed in culture media containing 0-5% (w/v) NaCl with a tenfold reduction at 10% (w/v) NaCl. Carotenoid production also decreased as salinity increased.  相似文献   

12.
The kinetics of carbon monoxide binding following fast reduction of the valency hybrids alpha2+betaCO2 and alphaCO2beta+2 by hydrated electrons have been studied at different degrees of reduction. The results show that at pH 6.0 and 7.0 reduction of one heme group yields a species which reacts fast with carbon monoxide (rate constant of the order of 10(6) M-1S-1). At pH 6.0 the intermediates alphaCO2beta2 and alpha2betaCO2 bind carbon monoxide with a rate characteristic of the T state. At pH 7.0 alphaCO2beta2 is for the greater part in the T state, while in the case of alpha2betaCO2 the R and the T state are about equally populated.  相似文献   

13.
The acidic dissociation constants in the range HO--1.5 to pH 7 of folic acid, dihydrofolic acid, methopterin (N(10)methylfolic acid), and methotrexate have been measured by potentiometric and spectrophotometric titrations. Assignment of these dissociations was made by comparison to model compounds, by proton magnetic resonance measurements, and by examination of associated ultraviolet absorbance changes. For folic acid, the dissociation constants are as follows: N(1), pK' 2.35; N(10), pK' 0.20; N(5), pK' greater than -1.5. For dihydrofolic acid: N(5), pK' 3.84; N(1), pK' 1.38; N(10), pK' 0.28. For methotrexate: N(1), pK' 5.71; gamma-carboxyl, pK' 4.70; alpha-carboxyl, pK' 3.36; N(10), pK' 0.50; N(5), boxyl, pK' 4.70; alpha-carboxyl, pK' 3.36; N(10), pK' 0.50; N(5) pK' greater than -1.5. For methopterin: acidic ionization of amide, pK' 7.68; gamma-carboxyl, pK' 4.62; N(1), pK' 2.40; N(10), pK; 0.36; N(5), pK' greater than -1.5. The pK' values were determined directly for the four compounds at 25 degrees near 0.1 ionic strength, or in 0.1 to 4 M HCl for pK ln 0.1 M NaCl.  相似文献   

14.
The aim of this work was to determine the osmotic and ionic (Na(+), K(+), Ca(2+), Mg(2+) and Cl(-)) haemolymph concentrations in Gammarus oceanicus at different salinity levels. Being a species of marine origin it inhabits brackish waters of the Baltic Sea. G. oceanicus specimens were collected in January 2003 from the Gulf of Gdansk (salinity 7 psu). The animals were gradually acclimated to eight different salinity levels (5, 7, 14, 20, 25, 30, 35 and 41 psu) at a temperature of 5 degrees C and 100% oxygen saturation. The haemolymph osmolalities correlated positively with external salinity, from 545.4+/-17.3 mOsm in 5 psu to 1185.9+/-34.6 mOsm in 41 psu. G. oceanicus hyperregulated within the 5-31.5 psu range; above 31.5 psu it hyporegulated its body fluids in comparison to the external medium. At 31.5 psu (1017 mOsm) the haemolymph concentration of G. oceanicus was isoosmotic with the habitat. The haemolymph concentrations of all the studied ions, except K(+), correlated positively with their concentrations at the various salinity.  相似文献   

15.
Analyses of temperature-dependent kinetic parameters in enzymes extracted from tissues of ectothermic animals are usually carried out within the range of physiological temperatures (0-40 degrees C). However, multisample spectrophotometers (so-called microplate readers) with efficient wide-range temperature control (including cooling) have previously been unavailable. This limits the statistical quality of the measurements. A temperature-controlled microplate was designed for a 96-well microplate reader to overcome this limitation. This so-called T-microplate is able to control assay temperature between the freezing point of a liquid sample and 60 degrees C with high stability and accuracy in any data acquisition mode. At 4 degrees C the accuracy of the temperature control was +/-0.1 degrees C and temperature homogeneity across the microplate was +/-0.3 degrees C. As examples, analyses of the temperature dependence of Michaelis-Menten (K'(PYR)(m) and substrate inhibition (K'(PYR)(si) constants for pyruvate, of the maximal rate of reaction (V'(max), of the apparent Arrhenius activation energy (E(A), and of the Gibbs free-energy change (deltaG) of lactate dehydrogenases from muscle of Atlantic cod Gadus morhua acclimated to 4 degrees C are described. The large dataset obtained allowed evaluation of a new mechanism of metabolic compensation in response to seasonal temperature change.  相似文献   

16.
Lungfish (Dipnoi) are probably sister group relative to all land vertebrates (Tetrapoda). The South American lungfish, Lepidosiren paradoxa, depends markedly on pulmonary gas exchange. In this context, we report on temperature effects on aquatic and pulmonary respiration, ventilation and blood gases at 15, 25 and 35 degrees C. Lung ventilation increased from 0.5 (15 degrees C) to 8.1 ml BTPS kg(-1) min(-1) (35 degrees C), while pulmonary O(2)-uptake increased from 0.06 (15 degrees C) to 0.73 ml STPD kg(-1) min(-1) (35 degrees C). Meanwhile aquatic O(2)-uptake remained about the same ( approximately 0.01 ml STPD kg(-1) min(-1)) at all temperatures. Concomitantly, the pulmonary gas exchange ratio (R(E)) rose from 0.11 (15 degrees C) to 0.62 (35 degrees C), because a larger fraction of total CO(2) output became eliminated by the lung. Accordingly, PaCO(2) rose from 13 (15 degrees C) to 37 mm Hg (35 degrees C), leading to a significant decrease of pHa at higher temperature (pHa=7.58-15 degrees C; 7.33-35 degrees C). The acid-base status of L. paradoxa was characterized by a generally low pH (7.4-7.5), high bicarbonate level (20-25 mM) and PaO(2) ( approximately 80 mm Hg). The increased dependence on the lung at higher temperature parallels data for amphibians. Further, the effects of bimodal gas exchange on temperature-dependent acid-base regulation closely resemble those of anuran amphibians.  相似文献   

17.
The mysid Gastrosaccus brevifissura (Peracarida: Mysidacea) is widely distributed in southern Africa and is thought to be important in the functioning of estuarine systems. This mysid may experience highly variable physicochemical conditions, and its physiological responses to these are of interest considering its ecological role. This study presents data on the metabolic physiology in relation to body length, temperature (15-30 degrees C) and salinity (15-35 psu) of a G. brevifissura population on the sub-tropical eastern seaboard of South Africa. Oxygen consumption rate was linearly related to size (for body lengths ranging from 3 to 10 mm) and varied among individuals from 0.67 to 6.51 microgram h(-1), dependent on environmental conditions. Oxygen consumption rate was largely independent of salinity variation between 20 and 35 psu, although was significantly depressed at 15 psu. Aerobic rate generally increased with an acute increase in temperature (Q(10)=2.147), but was not affected by 7 days of acclimation at either 15 or 25 degrees C. The lack of a metabolic adjustment to meet the additional energetic demands associated with a decline in salinity may well be a factor limiting the estuarine distribution of G. brevifissura. Even though feeding behaviour substantially changes between summer and winter, this may best be explained by food availability or other ecological factors, rather than a metabolic adjustment, considering the apparent lack of metabolic acclimation.  相似文献   

18.
姜丹    李银心  黄凌风  曾凡荣  张语克 《植物学报》2008,25(5):533-542
研究了厦门海区盐度和温度对北美海蓬子 (Salicornia bigelovii )种子萌发和幼苗生长的影响。结果显示, 海蓬子种子对温度变化反应非常敏感, 在15°C时发芽率最高(94%), 但萌发指数最低, 而在20°C时萌发指数最大; 在盐度5 g.L-1时种子具有最高的发芽率和萌发指数, 在盐度50 g.L-1时仍有13.3 %的发芽率, 并且各种盐度处理下逐日萌发指数均能在2天内达到最大。盐度10-20 g.L-1最适宜幼苗生长, 高盐(>30 g.L-1)具有一定的抑制作用, 主要表现为生长缓慢, 含水量和根系活力下降, 并且根的盐敏感程度大于茎。在不同盐度处理下, 北美海蓬子适应一种新的耐盐机制, 在无盐(0 g.L-1)和高盐(40 g.L-1) 胁迫下, 过氧化氢酶(catalas e, CAT)和过氧化物酶(peroxide, POD)这2种酶蛋白对盐离子效应敏感, 起主要的抗氧化作用; 相反, 生长在适宜盐度范围(10-30 g.L-1)内, 超氧化物歧化酶(superoxide dismutase, SOD)维持较高活性。研究结果表明, 北美海蓬子适宜在沿海滩涂环境条件下生长, 有望作为一种抗盐耐海水蔬菜加以开发和利用, 并进一步在污染海水净化修复中发挥可能的生态功能。  相似文献   

19.
The standard metabolic rate (SMR) of the caridean shrimp Palaemon peringueyi to changes in temperature (15-30 °C), salinity (0-45‰) and a combination thereof was investigated. The rate of oxygen consumption of the shrimp was determined using a YSI oxygen meter. At a constant salinity of 35‰ the respiration rate of P. peringueyi increased with an increase in temperature and ranged between 0.260 and 0.982 μl O2 mg wwt− 1 h− 1. The Q10 value over the temperature range 15-25 °C was estimated at 3.13. At a constant temperature of 15 °C the respiration rate of P. peringueyi also increased with an increase in salinity and ranged between 0.231 and 0.860 μl O2 mg wwt− 1 h− 1. For combination experiments the absence of any significant difference in the respiration rate of P. peringueyi at the four temperatures over the salinity range 15-35‰ suggests that the shrimp is well adapted to inhabiting environments characterised by variations in salinity and temperature such as those encountered within the middle and lower reaches of permanently open estuaries with substantial freshwater inflow. On the other hand, the total mortality of the shrimp recorded at salinities < 5‰ at all four temperatures suggests that the upper distribution of the shrimp may reflect physiological constraints. Similarly, the increase in the respiration rate of the shrimp at the four temperatures at salinities > 35‰ suggests that the shrimp may experience osmotic stress in freshwater deprived permanently open and intermittently open estuaries where hypersaline conditions may develop.  相似文献   

20.
By shortening to 5 seconds the burst of "fresh air" delivered by one level-pressing in 6 or 3 20 minutes sessions of operant conditioning at the ambient temperature of 35 +/- 1 degrees C brings 7 and 3 growing rats up to the maximal value of instrumental acquisition in 2 and 1 sessions. The experiment is going on with 40 minutes sessions in which the first 15 minutes belongs to the reward suppression. In spite of this inhibitory factor there is through the stimulus presence reconditioning which leads to instrumental adaptation at the ambient hyperthermia of 38.5 +/- 0.5 degrees C. At this temperature the instrumental activity level is the same as at 35 +/- 1 degrees C, in 20 minutes and the rectal temperature is rising up to provide compensatory work (+ 2.39 degrees C. instead of + 1.34 degrees C. at 35 +/- degrees C.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号