首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advances in the study of SR protein family   总被引:1,自引:0,他引:1  
The name of SR proteins is derived from their typical RS domain that is rich in serine (Ser, S) and arginine (Arg, R). They are conserved in evolution. Up to now, 10 members of the SR protein family have been identified in humans. SR proteins contain one or two RNA binding motifs aside from the RS domain, and also possess special biochemical and immunological features. As to the functions of SR proteins, they facilitate the recruitment of the components of splicesome via protein-protein interaction to prompt the assembly of early splicesome; while in alternative splicing, tissue-specifically expressed SR protein along with the relative ratio of SR protein and heterogeneous nuclear ribonucleoprotein (hnRNP) is composed of two main regulative mechanisms for alternative splicing. Almost all of the biochemical functions are regulated by reversible phosphorylation.  相似文献   

2.
SR蛋白家族在RNA剪接中的调控作用   总被引:1,自引:0,他引:1  
SR蛋白家族成员都具有一个富含丝氨酸/精氨酸(S/R)重复序列的RS结构域,在RNA剪接体的组装和选择性剪接的调控过程中具有重要的作用。绝大多数SR蛋白是生存的必需因子,通过其RS结构域和特有的其他结构域,实现与前体mRNA的特异性序列或其他剪接因子的相互作用,协同完成剪接位点的正确选择或促进剪接体的形成。深入研究SR蛋白家族在RNA选择性剪接中的调控机制,可以促进以疾病治疗或害虫防治为目的的应用研究。该文总结了SR蛋白家族在基础研究和应用方面的进展。  相似文献   

3.
4.
Although the pivotal implication of the host-encoded Prion protein, PrP, in the neuropathology of transmissible spongiform encephalopathy is known for decades, its biological role remains mostly elusive. Genetic inactivation is one way to assess such issue but, so far, PrP-knockout mice did not help much. However, recent reports involving (1) further studies of these mice during embryogenesis, (2) knockdown experiments in Zebrafish and (3) knockdown of Shadoo, a protein with PrP-like functional domains, in PrP-knockout mice, all suggested a role of the Prion protein family in early embryogenesis. This view is challenged by the recent report that PrP/Shadoo knockout mice are healthy and fertile. Although puzzling, these apparently contradictory data may on the contrary help at deciphering the Prion protein family role through focusing scientific attention outside the central nervous system and by helping the identification of other loci involved in the genetic robustness associated with PrP.  相似文献   

5.
6.
The name netrin is derived from the Sanskrit Netr, meaning ''guide''. Netrins are a family of extracellular proteins that direct cell and axon migration during embryogenesis. Three secreted netrins (netrins 1, 3 and 4), and two glycosylphosphatidylinositol (GPI)-anchored membrane proteins, netrins G1 and G2, have been identified in mammals. The secreted netrins are bifunctional, acting as attractants for some cell types and repellents for others. Receptors for the secreted netrins include the Deleted in Colorectal Cancer (DCC) family, the Down''s syndrome cell adhesion molecule (DSCAM), and the UNC-5 homolog family: Unc5A, B, C and D in mammals. Netrin Gs do not appear to interact with these receptors, but regulate synaptic interactions between neurons by binding to the transmembrane netrin G ligands NGL1 and 2. The chemotropic function of secreted netrins has been best characterized with regard to axon guidance during the development of the nervous system. Extending axons are tipped by a flattened, membranous structure called the growth cone. Multiple extracellular guidance cues direct axonal growth cones to their ultimate targets where synapses form. Such cues can be locally derived (short-range), or can be secreted diffusible cues that allow target cells to signal axons from a distance (long-range). The secreted netrins function as short-range and long-range guidance cues in different circumstances. In addition to directing cell migration, functional roles for netrins have been identified in the regulation of cell adhesion, the maturation of cell morphology, cell survival and tumorigenesis.  相似文献   

7.
The Hedgehog protein family   总被引:1,自引:0,他引:1  
  相似文献   

8.
The F-box protein family   总被引:8,自引:0,他引:8  
Kipreos ET  Pagano M 《Genome biology》2000,1(5):reviews3002.1-reviews30027
The F-box is a protein motif of approximately 50 amino acids that functions as a site of protein-protein interaction. F-box proteins were first characterized as components of SCF ubiquitin-ligase complexes (named after their main components, Skp I, Cullin, and an F-box protein), in which they bind substrates for ubiquitin-mediated proteolysis. The F-box motif links the F-box protein to other components of the SCF complex by binding the core SCF component Skp I. F-box proteins have more recently been discovered to function in non-SCF protein complexes in a variety of cellular functions. There are 11 F-box proteins in budding yeast, 326 predicted in Caenorhabditis elegans, 22 in Drosophila, and at least 38 in humans. F-box proteins often include additional carboxy-terminal motifs capable of protein-protein interaction; the most common secondary motifs in yeast and human F-box proteins are WD repeats and leucine-rich repeats, both of which have been found to bind phosphorylated substrates to the SCF complex. The majority of F-box proteins have other associated motifs, and the functions of most of these proteins have not yet been defined.  相似文献   

9.
Members of the homologous PRT family are catalytic and regulatory proteins involved in nucleotide synthesis and salvage. New crystal structures have revealed key elements of PRT protein function, as well as glimpses of how the fold has evolved to perform both catalytic and regulatory functions.  相似文献   

10.
The Argonaute protein family   总被引:5,自引:0,他引:5  
  相似文献   

11.
12.
The R-spondin protein family   总被引:1,自引:0,他引:1  
The four vertebrate R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. These proteins are approximately 35 kDa, and are characterized by two amino-terminal furin-like repeats, which are necessary and sufficient for Wnt signal potentiation, and a thrombospondin domain situated more towards the carboxyl terminus that can bind matrix glycosaminoglycans and/or proteoglycans. Although R-spondins are unable to initiate Wnt signaling, they can potently enhance responses to low-dose Wnt proteins. In humans, rare disruptions of the gene encoding R-spondin1 cause a syndrome of XX sex reversal (phenotypic male), palmoplantar keratosis (a thickening of the palms and soles caused by excess keratin formation) and predisposition to squamous cell carcinoma of the skin. Mutations in the gene encoding R-spondin4 cause anonychia (absence or hypoplasia of nails on fingers and toes). Recently, leucine-rich repeat-containing G-protein-coupled receptor (Lgr)4, Lgr5 and Lgr6, three closely related orphans of the leucine-rich repeat family of G-protein-coupled receptors, have been identified as receptors for R-spondins. Lgr5 and Lgr6 are markers for adult stem cells. Because R-spondins are potent stimulators of adult stem cell proliferation in vivo and in vitro, these findings might guide the therapeutic use of R-spondins in regenerative medicine.  相似文献   

13.
14.
Determinants of SR protein specificity.   总被引:18,自引:0,他引:18  
The SR (Ser-Arg) proteins are a family of nuclear factors that play multiple important roles in splicing of mRNA precursors in metazoan organisms, functioning in both constitutive and regulated splicing. Certain of these functions are redundant, such that any single SR proteins will suffice, but other functions are unique and are specific to a given family member. A number of studies during the past year have investigated the basis for SR protein specificity.  相似文献   

15.
The transthyretin-related protein family.   总被引:6,自引:0,他引:6  
A number of proteins related to the homotetrameric transport protein transthyretin (TTR) forms a highly conserved protein family, which we present in an integrated analysis of data from different sources combined with an initial biochemical characterization. Homologues of the transthyretin-related protein (TRP) can be found in a wide range of species including bacteria, plants and animals, whereas transthyretins have so far only been identified in vertebrates. A multiple sequence alignment of 49 TRP sequences from 47 species to TTR suggests that the tertiary and quaternary features of the three-dimensional structure are most likely preserved. Interestingly, while some of the TRP orthologues show as little as 30% identity, the residues at the putative ligand-binding site are almost entirely conserved. RT/PCR analysis in Caenorhabditis elegans confirms that one TRP gene is transcribed, spliced and predominantly expressed in the worm, which suggests that at least one of the two C. elegans TRP genes encodes a functional protein. We used double-stranded RNA-mediated interference techniques in order to determine the loss-of-function phenotype for the two TRP genes in C. elegans but detected no apparent phenotype. The cloning and initial characterization of purified TRP from Escherichia coli reveals that, while still forming a homotetramer, this protein does not recognize thyroid hormones that are the natural ligands of TTR. The ligand for TRP is not known; however, genomic data support a functional role involving purine catabolism especially linked to urate oxidase (uricase) activity.  相似文献   

16.
The multidrug resistance protein family   总被引:27,自引:0,他引:27  
The human multidrug resistance protein (MRP) family contains at least six members: MRP1, the godfather of the family and well known as the multidrug resistance protein, and five homologs, called MRP2-6. In this review, we summarize what is known about the protein structure, the expression in tissues, the routing in cells, the physiological functions, the substrate specificity, and the role in multidrug resistance of the individual members of the MRP family.  相似文献   

17.
The Bcl-2 protein family   总被引:30,自引:0,他引:30  
  相似文献   

18.
The EMILINs are a new family of glycoproteins of the extracellular matrix. The prototype of this family is the chicken EMILIN that was originally identified in extracts of aortas; it was then found to be widely distributed in several tissues associated with elastin and localized at the interface between amorphous elastin and microfibrils. Based on peptide sequences, chicken and human cDNAs coding for EMILIN were isolated by RT/PCR by screening kidney and heart cDNA libraries. By using a C-terminal fragment of human EMILIN-1 as a bait in the yeast two-hybrid system, a second family member, EMILIN-2, has also been isolated. EMILINs are characterized by a C-terminal gC1q globular domain, a short collagenous sequence, a long coiled-coil region and a new cysteine-rich N-terminal domain that can be considered a hallmark of the family being present also in multimerin. The gene for EMILIN-1 was mapped on chromosome 2p23 overlapping with the promoter region of the ketohexokinase gene. The gC1q domain of EMILIN-1 can form relatively stable and compact homotrimers and this association is then followed by a multimeric assembly of disulfide-bonded protomers. Recombinant EMILIN-1 purified from the supernatant of 293 cells represents a very efficient ligand for cell adhesion of several cell types.  相似文献   

19.
The S100 protein family   总被引:36,自引:0,他引:36  
  相似文献   

20.
The SR protein SRp38 represses splicing in M phase cells   总被引:15,自引:0,他引:15  
Shin C  Manley JL 《Cell》2002,111(3):407-417
SR proteins constitute a family of pre-mRNA splicing factors that play important roles in both constitutive and regulated splicing. Here, we describe one member of the family, which we call SRp38, with unexpected properties. Unlike other SR proteins, SRp38 cannot activate splicing and is essentially inactive in splicing assays. However, dephosphorylation converts SRp38 to a potent, general repressor that inhibits splicing at an early step. To investigate the cellular function of SRp38, we examined its possible role in cell cycle control. We show first that splicing, like other steps in gene expression, is inhibited in extracts of mitotic cells. Strikingly, SRp38 was found to be dephosphorylated specifically in mitotic cells, and we show that dephosphorylated SRp38 is required for the observed splicing repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号