首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Noelle V  Tennagels N  Klein HW 《Biochemistry》2000,39(24):7170-7177
We examined the effects of mutations of tyrosine and serine autophosphorylation sites on the dual specificity of the insulin receptor kinase (IRKD) in vitro using autophosphorylation and substrate phosphorylation and phosphopeptide mapping. For comparable studies, the recombinant kinases were overexpressed in the baculovirus system, purified, and analyzed. The phosphate incorporation into the enzymes was in the range of 3-4.5 mol/mol, and initial velocities of autophosphorylation were reduced up to 2-fold. However, the mutation Y1151F in the activation loop inhibited phosphate incorporation in the C-terminal serine residues 1275 and 1309, due to a 10-fold decrease of the initial velocity of serine autophosphorylation. Although the K(M) and V(MAX) values of this mutant were only slightly altered in substrate phosphorylation reactions using a recombinant C-terminal insulin receptor peptide (K(M): Y1151F, 9.9 +/- 0.4 microM; IRKD, 6.1 +/- 0.2 microM; V(MAX): Y1151F, 72 +/- 4 nmol min(-)(1) mg(-)(1); IRKD, 117 +/- 6 nmol min(-)(1) mg(-)(1)), diminished phosphate incorporation into serine residues of the peptide was observed. In contrast, the phosphorylation of a recombinant IRS-1 fragment, which was shown to be phosphorylated markedly on serine residues by IRKD, was not affected by any kinase mutation. These results underline that IRKD is a kinase with dual specificity. The substrate specificity toward C-terminal serine phosphorylation sites can be modified by a single amino acid substitution in the activation loop, whereas the specificity toward IRS-1 is not affected, suggesting that the C-terminus and the activation loop interact.  相似文献   

2.
We have extended our previous yeast two-hybrid findings to show that 14-3-3beta also interacts with the insulin-like growth factor I receptor (IGFIR) in mammalian cells overexpressing both proteins and that the interaction involves serine 1283 and is dependent on receptor activation. Treatment of cells with the phorbol ester PMA stimulates the interaction of 14-3-3beta with the IGFIR in the absence of receptor tyrosine phosphorylation, suggesting that receptor activation leads to activation of an endogenous protein kinase that catalyzes the phosphorylation of serine 1283. To investigate the role of 14-3-3 proteins in IGF signal transduction, IGFIR structure-function studies were performed. Mutation of serine 1283 alone (S1283A) (a mutation that decreases but does not abolish the interaction of the IGFIR with 14-3-3) did not affect anchorage-independent growth of NIH 3T3 fibroblasts overexpressing the mutant receptor. However, the simultaneous mutation of this residue and the truncation of the C-terminal 27 residues of the receptor (Delta1310/S1283A) abolished the interaction of the receptor with 14-3-3 and reversed the enhanced colony formation observed with the IGFIR truncation mutation alone (Delta1310). The difference between the Delta1310 and Delta1310/S1283A transfectants in the soft agar assay was confirmed by tumorigenesis experiments. These findings suggest that 14-3-3 proteins interact with the IGFIR in vivo and that this interaction may play a role in a transformation pathway signaled by the IGFIR.  相似文献   

3.
Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p. We showed the interaction between Dyrk1A and 14-3-3 in vitro and in vivo. The binding required the N-terminus of Dyrk1A and was independent of the Dyrk1A phosphorylation status. Functionally, 14-3-3 binding increased Dyrk1A kinase activity in a dose dependent manner in vitro. In vivo, a small peptide inhibiting 14-3-3 binding, sc138, decreased Dyrk1A kinase activity in COS7. In summary, these results suggest that DYRK1A kinase activity could be regulated by the interaction of 14-3-3.  相似文献   

4.
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.  相似文献   

5.
Interaction of 14-3-3 proteins with their targets depends not only on the phosphorylation status of the target but also on that of 14-3-3 (Fu et al., 2000). In this work we demonstrated that the maize 14-3-3 isoform GF14-6 is a substrate of the tyrosine kinase insulin growth factor receptor 1. By means of site-directed mutants of GF14-6, we identified Tyr-137 as the specific tyrosine residue phosphorylated by the insulin growth factor receptor 1. Phosphorylation of GF14-6 on Tyr-137 lowered its affinity for a peptide mimicking the 14-3-3 binding site of the plant plasma membrane H+-ATPase. Moreover, phosphorylation in planta of 14-3-3 tyrosine residues, resulting from incubation with the tyrosine phosphatase inhibitor, phenylarsine oxide, decreased their association to the H+-ATPase.  相似文献   

6.
Phosphorylation of insulin receptor substrate (IRS)-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.  相似文献   

7.
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.  相似文献   

8.
Abstract: A protein has been purified from human brain that appears to be the human equivalent of bovine 14-3-3 protein. On polyacrylamide gel electrophoresis the protein migrates as a faster major component, termed 14-3-3-2 protein, and a slower minor component, termed 14-3-3-1 protein, which consists of approximately 12% of the total protein. Both 14-3-3-1 and 14-3-3-2 have a native molecular weight of approximately 67,000. 14-3-3-2 appears to have the subunit composition (αβ; 14-3-3-1 has the composition ββ. Peptide mapping with Stuphvlococcus aureus V8 proteinase shows that α and β subunits are unrelated but the β and β' subunits show some common peptides. Immunoperoxidase labelling shows that 14-3-3 is localised in neurones in the human cerebral cortex. 14-3-3 shows no enolase, creatine kinase, triose phosphate isomerase, ATPase, cyclic nucleotide-dependent protein kinase, or purine nucleoside phosphorylase activity. 14-3-3 does not bind calcium and does not appear to be related to calmodulin, calcineurin, tubulin, neurofilament proteins, clathrin-associated proteins, or tropomyosin. The functional significance of this neuronal protein remains obscure.  相似文献   

9.
14-3-3 proteins are pSer/pThr-binding proteins that interact with a wide array of cellular ‘client’ proteins. The plant brassinosteroids (BRs) receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), is a member of the large family of leucine-rich repeat receptor-like kinases (LRR-RLKs) that contain cytoplasmic protein kinase domains. At least two LRR-RLKs are involved in BR perception and signal transduction: BRI1 and BRI1-associated receptor kinase 1 (BAK1). We determined that several 14-3-3 proteins bind to BRI1-CD and are phosphorylated by BRI1, BAK1 and At3g21430 receptor kinases in vitro. Moreover, we observed14-3-3 s are phosphorylated on threonine residue(s) with BR-dependent manner. To reveal the function of 14-3-3 proteins interacting with LRR-RLKs, we treated tyrosine phosphatase (PTP1B) to the BRI1-CD recombinant protein, which is autophosphorylated on tyrosine residue(s). Tyrosine autophosphorylation signal was disappeared, suggesting that 14-3-3 proteins cannot protect BRI1 tyrosine phosphorylation from PTP1B phosphatase. Our study suggests that 14-3-3 proteins may be important for plant growth and development through BR signaling.  相似文献   

10.
AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.  相似文献   

11.
By binding to serine-phosphorylated proteins, 14-3-3 proteins function as effectors of serine phosphorylation. The exact mechanism of their action is, however, still largely unknown. Here we demonstrate a requirement for 14-3-3 for Raf-1 kinase activity and phosphorylation. Expression of dominant negative forms of 14-3-3 resulted in the loss of a critical Raf-1 phosphorylation, while overexpression of 14-3-3 resulted in enhanced phosphorylation of this site. 14-3-3 levels, therefore, regulate the stoichiometry of Raf-1 phosphorylation and its potential activity in the cell. Phosphorylation of Raf-1, however, was insufficient by itself for kinase activity. Removal of 14-3-3 from phosphorylated Raf abrogated kinase activity, whereas addition of 14-3-3 restored it. This supports a paradigm in which the effects of phosphorylation on serine as well as tyrosine residues are mediated by inducible protein-protein interactions.  相似文献   

12.
To investigate the roles of insulin receptor substrate 3 (IRS-3) and IRS-4 in the insulin-like growth factor 1 (IGF-1) signaling cascade, we introduced these proteins into 3T3 embryonic fibroblast cell lines prepared from wild-type (WT) and IRS-1 knockout (KO) mice by using a retroviral system. Following transduction of IRS-3 or IRS-4, the cells showed a significant decrease in IRS-2 mRNA and protein levels without any change in the IRS-1 protein level. In these cell lines, IGF-1 caused the rapid tyrosine phosphorylation of all four IRS proteins. However, IRS-3- or IRS-4-expressing cells also showed a marked decrease in IRS-1 and IRS-2 phosphorylation compared to the host cells. This decrease was accounted for in part by a decrease in the level of IRS-2 protein but occurred with no significant change in the IRS-1 protein level. IRS-3- or IRS-4-overexpressing cells showed an increase in basal phosphatidylinositol 3-kinase activity and basal Akt phosphorylation, while the IGF-1-stimulated levels correlated well with total tyrosine phosphorylation level of all IRS proteins in each cell line. IRS-3 expression in WT cells also caused an increase in IGF-1-induced mitogen-activated protein kinase phosphorylation and egr-1 expression ( approximately 1.8- and approximately 2.4-fold with respect to WT). In the IRS-1 KO cells, the impaired mitogenic response to IGF-1 was reconstituted with IRS-1 to supranormal levels and was returned to almost normal by IRS-2 or IRS-3 but was not improved by overexpression of IRS-4. These data suggest that IRS-3 and IRS-4 may act as negative regulators of the IGF-1 signaling pathway by suppressing the function of other IRS proteins at several steps.  相似文献   

13.
The Protein kinase B (AKT) regulates a plethora of intracellular signaling proteins to fine-tune signaling of multiple pathways. Here, we found that following B-cell receptor (BCR)-induced tyrosine phosphorylation of the cytoplasmic tyrosine kinase SYK and the adaptor BLNK, the AKT/PKB enzyme strongly induced BLNK (>100-fold) and SYK (>100-fold) serine/threonine phosphorylation (pS/pT). Increased phosphorylation promoted 14-3-3 binding to BLNK (37-fold) and SYK (2.5-fold) in a pS/pT-concentration dependent manner. We also demonstrated that the AKT inhibitor MK2206 reduced pS/pT of both BLNK (3-fold) and SYK (2.5-fold). Notably, the AKT phosphatase, PHLPP2 maintained the activating phosphorylation of BLNK at Y84 and increased protein stability (8.5-fold). In addition, 14-3-3 was required for the regulation SYK⿿s interaction with BLNK and attenuated SYK binding to Importin 7 (5-fold), thereby perturbing shuttling to the nucleus. Moreover, 14-3-3 proteins also sustained tyrosine phosphorylation of SYK and BLNK. Furthermore, substitution of S295 or S297 for alanine abrogated SYK⿿s binding to Importin 7. SYK with S295A or S297A replacements showed intense pY525/526 phosphorylation, and BLNK pY84 phosphorylation correlated with the SYK pY525/526 phosphorylation level. Conversely, the corresponding mutations to aspartic acid in SYK reduced pY525/526 phosphorylation. Collectively, these and previous results suggest that AKT and 14-3-3 proteins down-regulate the activity of several BCR-associated components, including BTK, BLNK and SYK and also inhibit SYK⿿s interaction with Importin 7.  相似文献   

14.
Activation of the serine/threonine protein kinase Akt is a multistep process. We here propose that the kinase activity of Akt is regulated via autophosphorylation in trans at two putative sites (threonine 72 and serine 246) that lie in the characteristic Akt substrate motif (RXRXX(S/T)). Incubation of Akt immunoprecipitated from transfected cells with a pre-activated Akt recombinant protein and gamma-32P-labeled ATP led to marked incorporation of radioactivity in wild-type Akt but not Akt/T72A/S246A mutant. Western blot analysis using a phosphorylated Akt substrate-specific antibody of Akt immunoprecipitated from transfected cells confirmed the autophosphorylation of wild-type Akt but not Akt/T72A/S246A mutant in insulin-like growth factor-1 (IGF-1)-stimulated cells. Autophosphorylation of Akt on Thr-72 and Ser-246 appeared to require prior phosphorylation of Akt on Thr-308 and Ser-473. Compared with wild-type Akt, Akt/T72A/S246A mutant exhibited markedly reduced basal Akt kinase activity and response to cellular stimulation by insulin-like growth factor-1, and also conferred less cellular resistance to doxorubicin-induced apoptosis. The findings from these pilot studies suggest that Akt regulates its kinase activity through autophosphorylation. Further investigation of this potential novel regulatory mechanism by which Akt performs its cellular functions is warranted.  相似文献   

15.
The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser789. Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT.  相似文献   

16.
Cyclin-dependent kinase 11 isoforms (CDK11) are members of the p34(cdc2) superfamily. They have been shown to play a role in RNA processing and apoptosis. In the present study, we investigate whether CDK11 interacts with 14-3-3 proteins. Our study shows that the putative 14-3-3 binding site (113-RHRSHS-118) within the N-terminal domain of CDK11(p110) is functional. Endogenous CDK11(p110) binds directly to 14-3-3 proteins and phosphorylation of the serine 118 within the RHRSHS motif seems to be required for the binding. Besides, CDK11(p110) is capable of interacting with several different isoforms of 14-3-3 proteins both in vitro and in vivo. The interaction of 14-3-3 gamma with CDK11(p110) occurs throughout the entire cell cycle and reaches maximum at the G2/M phase. Interestingly, 14-3-3 gamma shows strong interaction with N-terminal portion of caspase-cleaved CDK11(p110) (CDK11(p60)) product at 48 h after Fas treatment, which correlates with the maximal cleavage level of CDK11(p110) and the maximum activation level of CDK11 kinase activity during apoptosis. Collectively, these results suggest that CDK11 kinases could be regulated by interaction with 14-3-3 proteins during cell cycle and apoptosis.  相似文献   

17.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

18.
We found that engagement of beta2 integrins on human neutrophils triggered both tyrosine and serine phosphorylation of c-Cbl. Pretreatment of the neutrophils with the broad range protein kinase C (PKC) inhibitor GF-109203X blocked the serine but not the tyrosine phosphorylation of c-Cbl. Moreover, the Src kinase inhibitor PP1 prevented the beta2 integrin-induced tyrosine phosphorylation of c-Cbl but not the simultaneous serine phosphorylation. These results indicate that Src family kinases and PKC can separately modulate the properties of c-Cbl. Indeed, tyrosine kinase-dependent phosphorylation of c-Cbl regulated the ubiquitin ligase activity of that protein, whereas PKC-dependent phosphorylation of c-Cbl had no such effect. Instead, c-Cbl that underwent PKC-induced serine phosphorylation associated with the scaffolding and anti-apoptotic 14-3-3 proteins. Consequently, c-Cbl can independently target proteins for degradation or intracellular localization and may initiate an anti-apoptotic signal in neutrophils.  相似文献   

19.
We previously demonstrated that antiestrogen 4-hydroxytamoxifen (OH-Tam) blocks the mitogenic activity of growth factors in breast cancer. We now investigate this mechanism by evaluating how OH-Tam affects growth factor binding and receptor tyrosine kinase activity. We show here that OH-Tam has an opposite effect on epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) binding in estrogen receptor (ER) positive cells. A decrease in IGF-1 binding sites may explain the reduced IGF-I mitogenic effect, whereas an increase in high affinity EGF binding associated with a decrease in in vitro receptor autophosphorylation rather favors the possibility of an alteration in EGF receptor tyrosine kinase activity. We conclude that OH-Tam may prevent growth factor action in ER+ cells both by modulating the concentration of growth factor binding sites and by altering growth factor receptor functionality.  相似文献   

20.
Kusakabe M  Nishida E 《The EMBO journal》2004,23(21):4190-4201
Par (partitioning-defective) genes were originally identified in Caenorhabditis elegans as determinants of anterior/posterior polarity. However, neither their function in vertebrate development nor their action mechanism has been fully addressed. Here we show that two members of Par proteins, 14-3-3 (Par-5) and atypical PKC (aPKC), regulate the serine/threonine kinase Par-1 to control Xenopus gastrulation. We find first that Xenopus Par-1 (xPar-1) is essential for gastrulation but not for cell fate specification during early embryonic development. We then find that xPar-1 binds to 14-3-3 in an aPKC-dependent manner. Our analyses identify two aPKC phosphorylation sites in xPar-1, which are essential for 14-3-3 binding and for proper gastrulation movements. The aPKC phosphorylation-dependent binding of xPar-1 to 14-3-3 does not markedly affect the kinase activity of xPar-1, but induces relocation of xPar-1 from the plasma membranes to the cytoplasm. Finally, we show that Xenopus aPKC and its binding partner Xenopus Par-6 are also essential for gastrulation. Thus, our results identify a requirement of Par proteins for Xenopus gastrulation and reveal a novel interrelationship within Par proteins that may provide a general mechanism for spatial control of Par-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号