首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Yao  Y Zhou    C Wang 《The EMBO journal》1997,16(3):651-658
The spontaneous reactivation yield of acidic phospholipase A2 (APLA2), a protein containing seven disulfide bonds, after reduction and denaturation in guanidine hydrochloride is very low. Protein disulfide isomerase (PDI) markedly increases the reactivation yield and prevents the aggregation of APLA2 during refolding in a redox buffer containing GSH and GSSG. S-methylated PDI (mPDI), with no isomerase but as nearly full chaperone activity as native PDI, has no effect on either the reactivation or aggregation of APLA2. However, the simultaneous presence of PDI and mPDI in molar ratios to APLA2 of 0.1 and 0.9 respectively fully reactivates the denatured enzyme, as does PDI alone at a ratio of 1. At ratios of 0.1 and 0.15 respectively, they completely suppress APLA2 aggregation, as does PDI alone at a ratio of 0.25. Moreover, delayed addition of PDI to the refolding buffer greatly diminished the reactivation yield of APLA2, but this deteriorating effect can be alleviated markedly by the presence of mPDI in the refolding buffer. Without GSSG, mPDI prevents the aggregation of APLA2 during refolding. It is proposed that the in vitro action of PDI as a foldase consists of both isomerase and chaperone activities, and the latter activity can be fully replaced by mPDI.  相似文献   

2.
Oxidative refolding of the dimeric alkaline protease inhibitor (API) from Streptomyces sp. NCIM 5127 has been investigated. We demonstrate here that both isomerase and chaperone functions of the protein folding catalyst, protein disulfide isomerase (PDI), are essential for efficient refolding of denatured-reduced API (dr-API). Although the role of PDI as an isomerase and a chaperone has been reported for a few monomeric proteins, its role as a foldase in refolding of oligomeric proteins has not been demonstrated hitherto. Spontaneous refolding and reactivation of dr-API in redox buffer resulted in 45% to 50% reactivation. At concentrations <0.25 microM, reactivation rates and yields of dr-API are accelerated by catalytic amounts of PDI through its isomerase activity, which promotes disulfide bond formation and rearrangement. dr-API is susceptible to aggregation at concentrations >25 microM, and a large molar excess of PDI is required to enhance reactivation yields. PDI functions as a chaperone by suppressing aggregation and maintains the partially unfolded monomers in a folding-competent state, thereby assisting dimerization. Simultaneously, isomerase function of PDI brings about regeneration of native disulfides. 5-Iodoacetamidofluorescein-labeled PDI devoid of isomerase activity failed to enhance the reactivation of dr-API despite its intact chaperone activity. Our results on the requirement of a stoichiometric excess of PDI and of presence of PDI in redox buffer right from the initiation of refolding corroborate that both the functions of PDI are essential for efficient reassociation, refolding, and reactivation of dr-API.  相似文献   

3.
Chaperone activity of DsbC.   总被引:7,自引:0,他引:7  
DsbC, a periplasmic disulfide isomerase of Gram-negative bacteria, displays about 30% of the activities of eukaryotic protein disulfide isomerase (PDI) as isomerase and as thiol-protein oxidoreductase. However, DsbC shows more pronounced chaperone activity than does PDI in promoting the in vitro reactivation and suppressing aggregation of denatured D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during refolding. Carboxymethylation of DsbC at Cys98 decreases its intrinsic fluorescence, deprives of its enzyme activities, but lowers only partly its chaperone activity in assisting GAPDH reactivation. Simultaneous presence of DsbC and PDI in the refolding buffer shows an additive effect on the reactivation of GAPDH. The assisted reactivation of GAPDH and the protein disulfide oxidoreductase activity of DsbC can both be inhibited by scrambled and S-carboxymethylated RNases, but not by shorter peptides, including synthetic 10- and 14-mer peptides and S-carboxymethylated insulin A chain. In contrast, all the three peptides and the two nonnative RNases inhibit PDI-assisted GAPDH reactivation and the reductase activity of PDI. DsbC assists refolding of denatured and reduced lysozyme to a higher level than does PDI in phosphate buffer and does not show anti-chaperone activity in HEPES buffer. Like PDI, DsbC is also a disulfide isomerase with chaperone activity but may recognize different folding intermediates as does PDI.  相似文献   

4.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

5.
Temperature directly controls functional properties of the DnaK/DnaJ/GrpE chaperone system. The rate of the high to low affinity conversion of DnaK shows a non-Arrhenius temperature dependence and above approximately 40 degrees C even decreases. In the same temperature range, the ADP/ATP exchange factor GrpE undergoes an extensive, fully reversible thermal transition (Grimshaw, J. P. A., Jelesarov, I., Sch?nfeld, H. J., and Christen, P. (2001) J. Biol. Chem. 276, 6098-6104). To show that this transition underlies the thermal regulation of the chaperone system, we introduced an intersubunit disulfide bond into the paired long helices of the GrpE dimer. The transition was absent in disulfide-linked GrpE R40C but was restored by reduction. With disulfide-stabilized GrpE, the rate of ADP/ATP exchange and conversion of DnaK from its ADP-liganded high affinity R state to the ATP-liganded low affinity T state continuously increased with increasing temperature. With reduced GrpE R40C, the conversion became slower at temperatures >40 degrees C, as observed with wild-type GrpE. Thus, the long helix pair in the GrpE dimer acts as a thermosensor that, by decreasing its ADP/ATP exchange activity, induces a shift of the DnaK.substrate complexes toward the high affinity R state and in this way adapts the DnaK/DnaJ/GrpE system to heat shock conditions.  相似文献   

6.
Protein-disulfide isomerase (PDI) catalyzes the formation, rearrangement, and breakage of disulfide bonds and is capable of binding peptides and unfolded proteins in a chaperone-like manner. In this study we examined which of these functions are required to facilitate efficient refolding of denatured and reduced proinsulin. In our model system, PDI and also a PDI mutant having only one active site increased the rate of oxidative folding when present in catalytic amounts. PDI variants that are completely devoid of isomerase activity are not able to accelerate proinsulin folding, but can increase the yield of refolding, indicating that they act as a chaperone. Maximum refolding yields, however, are only achieved with wild-type PDI. Using genistein, an inhibitor for the peptide-binding site, the ability of PDI to prevent aggregation of folding proinsulin was significantly suppressed. The present results suggest that PDI is acting both as an isomerase and as a chaperone during folding and disulfide bond formation of proinsulin.  相似文献   

7.
DnaK, a Hsp70 homolog of Escherichia coli, together with its co-chaperones DnaJ and GrpE protects denatured proteins from aggregation and promotes their refolding by an ATP-consuming mechanism. DnaJ not only stimulates the gamma-phosphate cleavage of DnaK-bound ATP but also binds polypeptide substrates on its own. Unfolded polypeptides, such as denatured luciferase, thus form ternary complexes with DnaJ and DnaK. A previous study has shown that d-peptides compete with l-peptides for the same binding site in DnaJ but do not bind to DnaK (Feifel, B., Sch?nfeld, H.-J., and Christen, P. (1998) J. Biol. Chem. 273, 11999-12002). Here we report that d-peptides efficiently inhibit the refolding of denatured luciferase by the DnaK/DnaJ/GrpE chaperone system (EC50 = 1-2 microM). The inhibition of the chaperone action is due to the binding of d-peptide to DnaJ (Kd = 1-2 microM), which seems to preclude DnaJ from forming ternary (ATP.DnaK)m.substrate.DnaJn complexes. Apparently, simultaneous binding of DnaJ and DnaK to one and the same target polypeptide is essential for effective chaperone action.  相似文献   

8.
Protein disulfide isomerase (PDI) functions as an isomerase to catalyze thiol:disulfide exchange, as a chaperone to assist protein folding, and as a subunit of prolyl-4-hydroxylase and microsomal triglyceride transfer protein. At a lower concentration of 0.2 microm, PDI facilitated the aggregation of unfolded rabbit muscle creatine kinase (CK) and exhibited anti-chaperone activity, which was shown to be mainly due to the hydrophobic interactions between PDI and CK and was independent of the cross-linking of disulfide bonds. At concentrations above 1 microm, PDI acted as a protector against aggregation but an inhibitor of reactivation during CK refolding. The inhibition effect of PDI on CK reactivation was further characterized as due to the formation of PDI-CK complexes through intermolecular disulfide bonds, a process involving Cys-36 and Cys-295 of PDI. Two disulfide-linked complexes containing both PDI and CK were obtained, and the large, soluble aggregates around 400 kDa were composed of 1 molecule of tetrameric PDI and 2 molecules of inactive intermediate dimeric CK, whereas the smaller one, around 200 kDa, was formed by 1 dimeric PDI and 1 dimeric CK. To our knowledge this is the first study revealing that PDI could switch its conformation from dimer to tetramer in its functions as a foldase. According to the observations in this research and our previous study of the folding pathways of CK, a working model was proposed for the molecular mechanism of CK refolding catalyzed by PDI.  相似文献   

9.
Rancy PC  Thorpe C 《Biochemistry》2008,47(46):12047-12056
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.  相似文献   

10.
It has been verified that prochymosin is characterized by a two-stage refolding: dilution of unfolded protein into pH 11 buffer followed by neutralization at pH 8; the high-pH step is indispensable. Here we demonstrate that one-stage refolding around pH 8 can be achieved when GroE or 10-fold molar excess (rather than catalytic concentration) of protein disulfide isomerase (PDI) over prochymosin is present. The helping effect varies with the oxidation states of prochymosin. GroE and PDI increase the reactivation of the unfolded, partially reduced and the unfolded, oxidized prochymosin from 5% to 40% and from 50% to 100%, respectively. For the unfolded and fully reduced prochymosin, GroE does not have a positive effect, whereas PDI promotes renaturation from 2% to 28%. Based on our previous and present observations, we propose that at pH 8 there may be two kinds of incorrect interactions within and between prochymosin polypeptides leading to unproductive pathways: one prevents disulfide rearrangement, which can be avoided by high pH; the other interferes with acquisition of native conformation, which can be relieved by GroE and PDI.  相似文献   

11.
This communication reports a new design of peptide disulfide, RKCGCFF, for facilitating oxidative protein refolding. The new design mimics the properties of protein disulfide isomerase (PDI) by introducing hydrophobic and positively charged patches into the two terminals of disulfide CGC. RKCGCFF was found more effective than the traditional oxidant oxidized glutathione (GSSG) as well as its counterpart, RKCGC, in facilitating the oxidative refolding of lysozyme. More importantly, RKCGCFF could improve lysozyme refolding yield at a high concentration (0.7 mg/mL). The research proved that incorporation of hydrophobic and charged patches into the CGC disulfide made the oxidant more similar to PDI in structure and properties.  相似文献   

12.
In addition to the sigma(32)-mediated heat shock response, the DnaK/DnaJ/GrpE molecular chaperone system of Escherichia coli directly adapts to elevated temperatures by sequestering a higher fraction of substrate. This immediate heat shock response is due to the differential temperature dependence of the activity of DnaJ, which stimulates the hydrolysis of DnaK-bound ATP, and the activity of GrpE, which facilitates ADP/ATP exchange and converts DnaK from its high-affinity ADP-liganded state into its low-affinity ATP-liganded state. GrpE acts as thermosensor with its ADP/ATP exchange activity decreasing above 40 degrees C. To assess the importance of this reversible thermal adaptation for the chaperone action of the DnaK/DnaJ/GrpE system during heat shock, we used glucose-6-phosphate dehydrogenase and luciferase as substrates. We compared the performance of wild-type GrpE as a component of the chaperone system with that of GrpE R40C. In this mutant, the thermosensing helices are stabilized with an intersubunit disulfide bond and its nucleotide exchange activity thus increases continuously with increasing temperature. Wild-type GrpE with intact thermosensor proved superior to GrpE R40C with desensitized thermosensor. The chaperone system with wild-type GrpE yielded not only a higher fraction of refolding-competent protein at the end of a heat shock but also protected luciferase more efficiently against inactivation during heat shock. Consistent with their differential thermal behavior, the protective effects of wild-type GrpE and GrpE R40C diverged more and more with increasing temperature. Thus, the direct thermal adaptation of the DnaK chaperone system by thermosensing GrpE is essential for efficient chaperone action during heat shock.  相似文献   

13.
We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.  相似文献   

14.
We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.  相似文献   

15.
克隆了Aspergillus niger T21中的蛋白质二硫键异构酶相关蛋白A(PRPA)基因,并将它插入pET23b表达载体。在E. coli中表达时,PRPA占菌体总蛋白的34%。经过超声破细胞、硫酸铵分级沉淀和离子交换层析获得了纯度大于90%的重组蛋白。PRPA有二硫键异构酶活性。在PRPA存在下,变性和还原的溶菌酶复性率和复性速度降低,电泳结果表明溶菌酶聚集增多。荧光结果表明PRPA表面有较多的疏水基团。  相似文献   

16.
17.
Peptidyl prolyl cis-trans isomerases can enzymatically assist protein folding, but these enzymes exclusively target the peptide bond preceding proline residues. Here we report the identification of the Hsp70 chaperone DnaK as the first member of a novel enzyme class of secondary amide peptide bond cis-trans isomerases (APIases). APIases selectively accelerate the cis-trans isomerization of nonprolyl peptide bonds. Results from independent experiments support the APIase activity of DnaK: (i) exchange crosspeaks between the cis-trans conformers appear in 2D (1)H NMR exchange spectra of oligopeptides (ii) the rate constants for the cis-trans isomerization of various dipeptides increase and (iii) refolding of the RNase T1 P39A variant is catalyzed. The APIase activity shows both regio and stereo selectivity and is stimulated two-fold in the presence of the complete DnaK/GrpE/DnaJ/ATP refolding system. Moreover, known DnaK-binding oligopeptides simultaneously affect the APIase activity of DnaK and the refolding yield of denatured firefly luciferase in the presence of DnaK/GrpE/DnaJ/ATP. These results suggest a new role for the chaperone as a regioselective catalyst for bond rotation in polypeptides.  相似文献   

18.
The nucleotide binding and release cycle of the molecular chaperone DnaK is regulated by the accessory proteins GrpE and DnaJ, also called co-chaperones. The concerted action of the nucleotide exchange factor GrpE and the ATPase-stimulating factor DnaJ determines the ratio of the two nucleotide states of DnaK, which differ in their mode of interaction with unfolded proteins. In the Escherichia coli system, the stimulation by these two antagonists is comparable in magnitude, resulting in a balance of the two nucleotide states of DnaK(Eco) in the absence and the presence of co-chaperones.The regulation of the DnaK chaperone system from Thermus thermophilus is apparently substantially different. Here, DnaJ does not stimulate the DnaK-mediated ATP hydrolysis and thus does not appear to act as an antagonist of the nucleotide exchange factor GrpE(Tth). This raises the question of whether T. thermophilus GrpE stimulates nucleotide exchange to a smaller degree as compared to the E. coli system and how the corresponding rates relate to intrinsic ATPase and ATP binding as well as luciferase refolding kinetics of T. thermophilus DnaK.We determined dissociation constants as well as kinetic constants that describe the interactions between the T. thermophilus molecular chaperone DnaK, its nucleotide exchange factor GrpE and the fluorescent ADP analogue N8-(4-N'-methylanthraniloylaminobutyl)-8-aminoadenosine-5'-diphosphate by isothermal equilibrium titration calorimetry and stopped-flow kinetic experiments and investigated the influence of T. thermophilus DnaJ on the DnaK nucleotide cycle.The interaction of GrpE with the DnaK.ADP complex versus nucleotide-free DnaK can be described by a simple equilibrium system, where GrpE reduces the affinity of DnaK for ADP by a factor of about 10. Kinetic experiments indicate that the maximal acceleration of nucleotide release by GrpE is 80,000-fold at a saturating GrpE concentration.Our experiments show that in T. thermophilus, although the thermophilic DnaK system displays no stimulation of the DnaK-ATPase activity by DnaJ, nucleotide exchange is still efficiently stimulated by GrpE. This indicates that two counteracting factors are not absolutely necessary to maintain a functional and regulated chaperone cycle. This conclusion is corroborated by data that show that the slower ATPase cycle of the DnaK system as well as of heterologous T. thermophilus DnaK/E. coli DnaK systems is directly reflected in altered refolding kinetics of firefly luciferase but not necessarily in refolding yields.  相似文献   

19.
In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p and one or more of its ER homologues (Mpd1p, Mpd2p, Eug1p, Eps1p) are required for efficient carboxypeptidase Y maturation. Consistent with its function as a disulfide isomerase in vivo, the active sites of Pdi1p are partially reduced (32 +/- 8%) in vivo. These results suggest that PDI and its ER homologues contribute both oxidase and isomerase activities to the yeast ER. The isomerase activity of PDI can be compromised without affecting growth and viability, implying that yeast proteins that are essential under laboratory conditions may not require efficient disulfide isomerization.  相似文献   

20.
GrpE is the nucleotide-exchange factor of the DnaK chaperone system. Escherichia coli cells with the classical temperature-sensitive grpE280 phenotype do not grow under heat-shock conditions and have been found to carry the G122D point mutation in GrpE. To date, the molecular mechanism of this defect has not been investigated in detail. Here, we examined the structural and functional properties of isolated GrpE(G122D) in vitro. Similar to wild-type GrpE, GrpE(G122D) is an elongated dimer in solution. Compared to wild-type GrpE, GrpE(G122D) catalyzed the ADP/ATP exchange in DnaK only marginally and did not compete with wild-type GrpE in interacting with DnaK. In the presence of ADP, GrpE(G122D) in contrast to wild-type GrpE, did not form a complex with DnaK detectable by size-exclusion chromatography with on-line static light-scattering and differential refractometry. Apparently, GrpE(G122D) in the presence of ADP binds to DnaK only with much lower affinity than wild-type GrpE. GrpE(G122D) could not substitute for wild-type GrpE in the refolding of denatured proteins by the DnaK/DnaJ/GrpE chaperone system. In the crystal structure of a (Delta1-33)GrpE(G122D).DnaK-ATPase complex, which as yet is the only available structure of a GrpE variant, Asp122 does not interact directly with neighboring residues of GrpE or DnaK. The far-UV circular dichroism spectra of mutant and wild-type GrpE proved slightly different. Possibly, a discrete change in conformation impairs the formation of the complex with DnaK and renders GrpE(G122D) virtually inactive as a nucleotide exchange factor. In view of the drastically reduced ADP/ATP-exchange activity of GrpE(G122D), the heat sensitivity of grpE280 cells might be explained by the ensuing slowing of the chaperone cycle and the increased sequestering of target proteins by high-affinity, ADP-liganded DnaK, both effects being incompatible with efficient chaperone action required for cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号