首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mannosylerythritol lipids (MELs), which are glycolipid biosurfactants produced by Pseudozyma yeasts, show not only excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from glucose as the sole carbon source, P. antarctica was found to produce unknown glycolipids more hydrophilic than conventional “di-acylated MELs,” which have two fatty acyl esters on the mannose moiety. Based on a detailed characterization, the most hydrophilic one was identified as 4-O-(3′-O-alka(e)noyl-β-d-mannopyranosyl)-d-erythritol namely, “mono-acylated MEL.” The mono-acylated MEL reduced the surface tension of water to 33.8 mN/m at a critical micelle concentration (CMC) of 3.6 × 10−4 M, and its hydrophilic–lipophilic balance was tentatively calculated to be 12.15. The observed CMC was 100-fold higher than that of the MELs hitherto reported. Interestingly, of the yeast strains of the genus Pseudozyma, only P. antarctica and P. parantarctica gave the mono-acylated MEL from glucose, despite a great diversity of di-acylated MEL producers in the genus. These strains produced MELs including the mono-acylated one at a rate of 20–25%. From these results, the new MEL is likely to have great potential for use in oil-in-water-type emulsifiers and washing detergents because of its higher water solubility compared to conventional MELs and will thus contribute to facilitating a broad range of applications for the environmentally advanced surfactants.  相似文献   

2.
Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants known because of their multifunctionality and biocompatibility. A previously isolated yeast strain, Pseudozyma sp. KM-59, mainly produced a hydrophilic MEL, namely MEL-C (4-O-[4′-O-acetyl-2′,3′-di-O-alka(e)noyl-β-d-mannopyranosyl]-d-erythritol). In this study, we taxonomically characterize the strain in detail and investigate the culture conditions. The genetic, morphological, and physiological characteristics of the strain coincided well with those of Pseudozyma hubeiensis. On batch culture for 4 days under optimal conditions, the yield of all MELs was 21.8 g/l; MEL-C comprised approximately 65% of the all MELs. Consequently, on fed-batch culture for 16 days, the yield reached 76.3 g/l; the volumetric productivity was approximately 4.8 g l−1 day−1. We further examined the surface-active and self-assembling properties of the hydrophilic MELs produced by the yeast strain. They showed higher emulsifying activities against soybean oil and a mixture of hydrocarbons (2-methylnaphtarene and hexadecane, 1:1) than the synthetic surfactants tested. On water penetration scans, they efficiently formed lyotropic liquid crystalline phases such as myelines and lamella () in a broad range of their concentrations, indicating higher hydrophilicity than conventional MELs. More interestingly, there was little difference in the liquid crystal formation between the crude product and purified MEL-C. The present glycolipids with high hydrophilicity are thus very likely to have practical potential without further purification and to expand the application of MELs especially their use in washing detergents and oil-in-water-type emulsifiers.  相似文献   

3.
Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs.  相似文献   

4.
We previously reported the first isolation of Pseudozyma species from the blood of Thai patients. In this study, three additional new Pseudozyma species were isolated from clinical specimens from Thai patients. The Pseudozyma species showed relatively low sensitivity to azole antifungal agents. The names proposed for these isolates are Pseudozyma alboarmeniaca (DMST 17135T = JCM 12454T = CBS 9961T), Pseudozyma crassa (DMST 17136T = JCM 12455T = CBS 9959T) and Pseudozyma siamensis (DMST 17137T = JCM 12456T ?CBS 9960T), where DMST is Department of Medical Sciences Culture Collection, JCM is Japan Collection of Microorganisms and CBS is Centraalbureau voor Schimmelcultures.
  相似文献   

5.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by Pseudozyma yeasts. They show not only the excellent interfacial properties but also versatile biochemical actions. In the course of MEL production from soybean oil by P. antarctica and P. rugulosa, some new extracellular glycolipids (more hydrophobic than the previously reported di-acylated MELs) were found in the culture medium. The most hydrophobic one was identified as 1-O-alka(e)noyl-4-O-[(4′,6′-di-O-acetyl-2′,3′-di-O-alka(e)noyl)-β-d-mannopyranosyl]-d-erythritol, namely tri-acylated MEL. Others were tri-acylated MELs bearing only one acetyl group. The tri-acylated MEL could be prepared by the lipase-catalyzed esterification of a di-acylated MEL with oleic acid implying that the new glycolipids are synthesized from di-acylated MELs in the culture medium containing the residual fatty acids.  相似文献   

6.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties, but also versatile biochemical actions. During a survey of new MEL producers, we found that a basidiomycetous yeast, Pseudozyma crassa, extracellularly produces three glycolipids. When glucose and oleic acid were used as the carbon source, the total amount of glycolipids reached approximately 4.6 g/L in the culture medium. The structures of these glycolipids were similar to those of well-known MEL-A, -B, and -C, respectively. Very interestingly, in all the present glycolipids, the configuration of the erythritol moiety was entirely opposite to that of conventional MELs. The present glycolipids were identified to have the carbohydrate structure of 4-O-β-d-mannopyranosyl-(2R,3S)-erythritol, stereochemically different from 4-O-β-d-mannopyranosyl-(2S,3R)-erythritol of conventional MELs. Furthermore, these new glycolipids possessed both short-chain acids (C2 or C4) and long-chain acids (C14, C16, or C18) on the mannose moiety. The major component of the present glycolipids clearly showed different interfacial and biological properties, compared to conventional MELs comprising two medium-chain acids on the mannose moiety. Accordingly, the novel MEL diastereomers produced by P. crassa should provide us with different glycolipid functions, and facilitate a broad range of applications of MELs.  相似文献   

7.
Two strains of Pseudozyma aphidis, DSM 70725 and DSM 14930, were used for the bioreactor production of mannosylerythritol lipids (MELs). Foam formation interfered substantially with the cultivation process. Soybean oil was simultaneously employed as both carbon source and anti-foam agent. Primary MEL formation occurred after nitrate limitation. After a first short time-period of nitrate limitation and further nitrate addition, MELs were secreted in spite of nitrate excess. The sedimentation of MEL-enriched beads indicated enhanced product formation. Maximum yield, productivity and yield coefficient of 165 g l−1, 13.9 g l−1 day−1 and 0.92 g g−1 were achieved using strain DSM 14930 with additional substrate-feeding (glucose, sodium nitrate, yeast extract) and a foam-controlled soybean oil supply.  相似文献   

8.
One yeast strain, SY16, was selected as a potential producer of a biosurfactant, and identified as a Candida species. A biosurfactant produced from Candida sp. SY16 was purified and confirmed to be a glycolipid. This glycolipid-type biosurfactant lowered the surface tension of water to 29 dyne/cm at critical micelle concentration of 10 mg/l (1.5 × 10−5 M), and the minimum interfacial tension was 0.1 dyne/cm against kerosene. Thin-layer and high-pressure liquid chromatography studies demonstrated that the glycolipid contained mannosylerythritol as a hydrophilic moiety. The hydrophilic sugar moiety of the biosurfactant was determined to be β-d-mannopyranosyl-(1 → 4)-O-meso-erythritol by nuclear magnetic resonance (NMR) and fast atom bombardment mass–spectroscopy analyses. The hydrophobic moiety, fatty acids, of the biosurfactant was determined to be hexanoic, dodecanoic, tetradecanoic, and tetradecenoic acid by gas chromatography–mass spectroscopy. The structure of the native biosurfactant was determined to be 6-O-acetyl-2,3- di-O-alkanoyl-β-d-mannopyranosyl-(1 → 4)-O-meso-erythritol by NMR analyses. We newly determined that an acetyl group was linked to the C-6 position of the d-mannose unit in the hydrophilic sugar moiety. Received: 18 December 1999 / Received last revision: 2 June 1999 / Accepted: 4 June 1999  相似文献   

9.
This study deals with two range-extending brown algae from Tahitian coral reefs, Sargassum mangarevense and Turbinaria ornata; their alginate properties, mannitol and phenolic contents, antioxidant and antimicrobial activities were determined. Turbinaria ornata showed the richest alginate content with the highest extraction yield (19.2 ± 1.3% dw). Their alginates also exhibited the highest viscosity (50 ± 18 mPa.s), but the M:G ratios (mannuronic acid to glucuronic acid) of alginates (1.25–1.42) were similar in both species. Alginate yield displayed spatial variations, but no significant seasonal changes. The highest mannitol content was found in S. mangarevense (12.2 ± 2.1% dw) during the austral winter. With respect to other tropical Fucales, both algae exhibited also a high phenolic content (2.45–2.85% dw) with significant spatio-temporal variations. Furthermore, high antioxidant activity and activity against Staphylococcus aureus were also detected in extracts. According to these preliminary results, these two range-extending algae are of key interest in numerous industrial areas.  相似文献   

10.
The producers of glycolipid biosurfactant, mannosylerythritol lipid-B (MEL-B), were isolated from leaves of Perilla frutescens on Ibaraki in Japan. Four isolates, 1D9, 1D10, 1D11, and 1E5, were identified as basidiomycetous yeast Pseudozyma tsukubaensis by rDNA sequence and biochemical properties. The structure of MEL-B produced by these strains was analyzed by 1H nuclear magnetic resonance and gas chromatography–mass spectrometry methods, and was determined to be the same as the diastereomer MEL-B produced by P. tsukubaensis NBRC 1940. Of these isolates, P. tsukubaensis 1E5 (JCM 16987) is capable of producing the largest amount of the diastereomer MEL-B from vegetable oils. In order to progress the diastereomer MEL-B production by strain 1E5, factors affecting the production, such as carbon and organic nutrient sources, were further examined. Olive oil and yeast extract were the best carbon and nutrient sources, respectively. Under the optimal conditions, a maximum yield, productivity, and yield coefficient of 73.1 g/L, 10.4 g L−1 day−1, and 43.5 g/g were achieved by feeding of olive oil in a 5-L jar-fermenter culture using strain 1E5.  相似文献   

11.
A new halophilic anaerobe was isolated from the hypersaline surface sediments of El-Djerid Chott, Tunisia. The isolate, designated as strain 6SANG, grew at NaCl concentrations ranging from 14 to 30%, with an optimum at 20–22%. Strain 6SANG was a non-spore-forming, non-motile, rod-shaped bacterium, appearing singly, in pairs, or occasionally as long chains (0.7–1 × 4–13 μm) and showed a Gram-negative-like cell wall pattern. It grew optimally at pH values between 7.2 and 7.4, but had a very broad pH range for growth (5.9–8.4). Optimum temperature for growth was 42°C (range 30–50°C). Strain 6SANG required yeast extract for growth on sugars. Glucose, sucrose, galactose, mannose, maltose, cellobiose, pyruvate, and starch were fermented. The end products from glucose fermentation were acetate, butyrate, lactate, H2, and CO2. The G + C ratio of the DNA was 34.3 mol%. Strain 6SANG exhibited 16S rRNA gene sequence similarity values of 91–92% with members of the genus Halobacteroides, H. halobius being its closest phylogenetic relative. Based on phenotypic and phylogenetic characteristics, we propose that this bacterium be classified as a novel species of a novel genus, Halanaerobaculum tunisiense gen. nov., sp. nov. The type strain is 6SANGT (=DSM 19997T = JCM 15060T).  相似文献   

12.
A thermophilic, rod-shaped, motile, Gram-positive, spore-forming bacterium strain 70BT was isolated from a geothermally active underground mine in Japan. The temperature and pH range for growth was 50–81°C (optimum 71°C) and 6.2–9.8 (optimum pH 7–7.5), respectively. Growth occurred in the presence 0–2% NaCl (optimum 1% NaCl). Strain 70BT could utilize glucose, fructose, mannose, mannitol, pyruvate, cellobiose and tryptone as substrates. Thiosulfate was used as electron acceptor. Major whole-cell fatty acids were iso-C15:0, C16:0 DMA (dimethyl acetal), C16:0 and anteiso-C15:0. The G+C mol% of the DNA was 44.2%. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the closest relatives of strain 70BT were Thermosediminibacter oceani DSM 16646T (94% similarity) and Thermosediminibacter litoriperuensis DSM 16647 (93% similarity). The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain 70BT represents a novel species in a new genus, for which the name Thermovorax subterraneus gen. nov., sp. nov. is proposed. The type strain of Thermovorax subterraneus is 70BT (=DSM 21563 = JCM 15541).  相似文献   

13.
Three novel isolates of haloalkaliphilic archaea, strains IHC-005T, IHC-010, and N-1311T, from soda lakes in Inner Mongolia, China, were characterized to elucidate their taxonomic positions. The three strains were aerobic, Gram-negative chemoorganotrophs growing optimally at 37–45°C, pH 9.0–9.5, and 15–20% NaCl. Cells of strains IHC-005T/IHC-010 were motile rods, while those of strain N-1311T were non-motile pleomorphic flats or cocci. The three strains contained diphytanyl and phytanyl-sesterterpanyl diether derivatives of phosphatidylglycerol and phosphatidylglycerophosphate methyl ester. No glycolipids were detected. On phylogenetic analysis of 16S rRNA gene sequences, they formed an independent cluster in the Natro group of the family Halobacteriaceae. Comparison of their morphological, physiological, and biochemical properties, DNA G+C content and 16S rRNA gene sequences, and DNA-DNA hybridization study support the view that strains IHC-005T/IHC-010 and strain N-1311T represent separate species. Therefore, we propose Natronolimnobius baerhuensis gen. nov., sp. nov. for strains IHC-005T (=CGMCC 1.3597T =JCM 12253T)/IHC-010 (=CGMCC 1.3598=JCM 12254) and Natronolimnobius innermongolicus sp. nov. for N-1311T (=CGMCC 1.2124T =JCM 12255T).  相似文献   

14.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

15.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants produced by the yeast strains of the genus Pseudozyma. These compounds show not only excellent surface-active properties but also versatile biochemical activities. In the course of MEL production by Pseudozyma tsukubaensis, we found an unusual MEL that had a different carbohydrate structure from that of conventional MELs. The carbohydrate structure was identified as 1-O-beta-D-mannopyranosyl-D-erythritol, and the MEL was confirmed to be 1-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol. Interestingly, the configuration of the erythritol moiety in the present MEL was opposite to that of the known MEL-B, 4-O-beta-(2',3'-di-O-alka(e)noyl-6'-O-acetyl-D-mannopyranosyl)-D-erythritol, and to that of all MELs hitherto reported. The present MEL should thus provide different interfacial and biochemical properties compared to conventional MELs.  相似文献   

16.
A case-control study established that the haplotype pair HYA/HYA at the MBL (mannose binding lectin) locus of water buffalo is associated with resistance to Brucella abortus infection (P < 10−7) and the haplotype pairs LYD/LYD with susceptibility to the same pathogen (P < 10−7). The subjects included in the present study were tested twice—at a 1-month interval—for the presence of anti-B. abortus antibodies in the serum by agglutination, complement fixation and flow cytometry. Cases (335 subjects) included animals consistently positive to all these tests; controls (335 subjects) comprised animals exposed yet negative by the same tests. The serum from genetically resistant subjects displayed in vitro significantly higher antibacterial activity compared to the serum from genetically susceptible subjects, lending biological significance to the results from the association study. Inhibition of the antibacterial activity following heat treatment of the serum, addition of specific MBL inhibitors (EDTA, mannose, N-acetyl-d-glucosamine) or anti-human MBL antiserum provide convincing evidence that the antibacterial activity present in the serum results from the interaction between MBL and B. abortus. A replication study (comprising 100 cases and 100 controls) confirmed the results from the original study.  相似文献   

17.
Pseudozyma antarctica is one of the best producers of the glycolipid biosurfactants known as mannosylerythritol lipids (MELs), which show not only excellent surface-active properties but also versatile biochemical actions. In order to obtain a variety of producers, all the species of the genus were examined for their production of MELs from soybean oil. Pseudozyma fusiformata, P. parantarctica and P. tsukubaensis were newly identified to be MEL producers. Of the strains tested, P. parantarctica gave the best yield of MELs (30 g L(-1)). The obtained yield corresponded to those of P. antarctica, P. aphidis and P. rugulosa, which are known high-level MEL producers. Interestingly, P. parantarctica and P. fusiformata produced mainly 4-O-[(4',6'-di-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-A), whereas P. tsukubaensis produced mainly 4-O-[(6'-mono-O-acetyl-2',3'-di-O-alkanoyl)-beta-d-mannopyranosyl]-meso-erythritol (MEL-B). Consequently, six of the nine species clearly produced MELs. Based on the MEL production pattern, the nine species seemed to fall into four groups: the first group produces large amounts of MELs; the second produces both MELs and other biosurfactants; the third mainly produces MEL-B; and the fourth is non-MEL-producing. Thus, MEL production may be an important taxonomic index for the Pseudozyma yeasts.  相似文献   

18.
Mannosylerythritol lipids (MELs) are natural glycolipid biosurfactants which have potential applications in the fields of food, cosmetic and medicine. In this study, MELs were produced from vegetable oil by Pseudozyma aphidis. Their structural data through LC/MS, GC/MS and NMR analysis revealed that MEL-A with two acetyls was the major compound and the identified homologs of MEL-A contained a length of C8 to C14 fatty acid chains. This glycolipid exhibited a surface tension of 27.69 mN/m at a critical micelle concentration (CMC), self-assembling into particles in the water solution. It was observed to induce cell growth-inhibition and apoptosis of B16 melanoma cells in a dose-dependent manner, as well as cause cell cycle arrest at the S phase. Further quantitative RT-PCR analysis and western blotting revealed an increasing tendency of both mRNA and protein expressions of Caspase-12, CHOP, GRP78 and Caspase-3, and a down-regulation of protein Bcl-2. Combined with the up regulation of signaling IRE1 and ATF6, it can be speculated that MEL-A-induced B16 melanoma cell apoptosis was associated with the endoplasmic reticulum stress (ERS).  相似文献   

19.
Taxonomic studies were performed on three strains isolated from Cheonho reservoir in Cheonan, Korea. The isolates were Gram-negative, aerobic, rod-shaped, non-motile, catalase-positive, and oxidase-positive. Colonies on solid media were cream-yellow, smooth, shiny, and circular. Phylogenetic analysis of the 16S rRNA gene sequences revealed that these strains belong to the genus Flavobacterium. The strains shared 98.6–99.4% sequence similarity with each other and showed less than 97% similarity with members of the genus Flavobacterium with validly published names. The DNA-DNA hybridization results confirmed the separate genomic status of strains ARSA-42T, ARSA-103T, and ARSA-108T. The isolates contained menaqui-none-6 as the predominant menaquinone and iso-C15:0, iso-C15:0 3-OH, iso-Ci15:1 G, and iso-C16:0 3-OH as the major fatty acids. The genomic DNA G+C content of the isolates were 31.4–33.2 mol%. According to the phenotypic and genotypic data, these organisms are classified as representative of three novel species in the genus Flavobacterium, and the name Flavobacterium koreense sp. nov. (strain ARSA-42T =KCTC 23182T =JCM 17066T =KACC 14969T), Flavobacterium chungnamense sp. nov. (strain ARSA-103T =KCTC 23183T =JCM 17068T =KACC 14971T), and Flavobacterium cheonanense sp. nov. (strain ARSA-108T =KCTC 23184T =JCM 17069T =KACC 14972) are proposed.  相似文献   

20.
Ultrasonic telemetry was used to analyze the effects of environmental variables on movement directions and movement rates of brown smoothhounds, Mustelus henlei, in Tomales Bay, California. Ultrasonic transmitters were surgically implanted in the peritoneal cavities of one male and five female brown smoothhounds and tracked during the period of 29 June to 15 July 2004. Coarse-scale tracking consisted of locating all tagged individuals multiple times during a single session, while fine-scale tracking consisted of following a single individual continuously during a session. Coarse-scale tracking suggested movement toward the inner bay with incoming and high tides and toward the outer bay with outgoing and low tides (P = 0.01), whereas the diel cycle had no apparent effect on their movement directions. Mean shark movement rate was 0.09 m s−1 (range: 0.01–0.34 m s−1), with diel and tidal cycles both having significant effects on their rates of movement (P = 0.02 and P < 0.01), respectively. We tracked two female sharks on a fine scale over three tracking sessions in July 2004. Both individuals exhibited higher rates of movement during the night compared to the day (P < 0.01). While one shark’s rate of movement was not significantly affected by tidal stage, the other’s was (P < 0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号