首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A xanthine oxidase enzyme electrode (xanthine oxidase immobilized on electrochemically modified graphite and conveniently coated with gelatine electrode working surface) for quantitative analysis of xanthine is proposed. The detection of thus developed electrochemical system is based on the electroreduction of hydrogen peroxide generated in enzyme layer and offered L-ascorbic and uric acid reducing interference effect on the substrate determination. At a working potential -50 mV (vs. Ag/AgCl) the detection limit of 4.5 microM and the linearity of the amperometric signal up to substrate concentration of about 40 microM were found. At that working potential, the electrode is practically inert towards L-ascorbic- and uric acid present. The response time did not exceed 2 min.  相似文献   

2.
Glucose oxidase (E. C. 1.1.3.4) was immobilized on electrochemically modified graphite to obtain an enzyme electrode. The working surface of the electrode was coated with gelatine to prevent desorption of the enzyme. In substrate (glucose) solutions the amperometric signal of the enzyme electrode was due to the electroreduction of H202 generated in the enzyme layer. The linearity of the electrode response was found up to a substrate concentration of 300 microM at a working potential of 0 mV (vs. Ag/AgCl). It was shown that the electrode did not respond to L-ascorbic and uric acid at that working potential. The response time was about 2 min. The enzyme electrode keeps about 50% of its initial activity after a one-week storage at 4 degrees C.  相似文献   

3.
An enzyme electrode for the specific determination of catechol was developed by using catechol oxidase (EC 1.10.3.1) from eggplant (Solanum melangena L.) in combination with a dissolved oxygen probe. Optimization studies of the prepared catechol oxidase enzyme electrode established a phosphate buffer 50 mM at pH 7.0 and 35°C to provide the optimum conditions for affirmative electrode response. The enzyme electrode response depended linearly on a catechol concentration range of 5?10-7-30?10-5 M with a response time of 25 sec and substrate specificity of the catechol oxidase electrode of 100%. The biosensor retained its enzyme activity for at least 70 days.  相似文献   

4.
A sensitive and selective amperometric glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline (PANI) was investigated. Poly (m-phenylenediamine) (PMPD), which was employed as an anti-interferent barrier and a protective layer to platinum microparticles, was deposited onto platinum-modified PANI in the presence of glucose oxidase. The morphology of PANI, Pt/PANI and PMPD-GOD/Pt/PANI were investigated by scanning electron microscopy. The results show that PANI has a nano-fibrous morphology. The enzyme electrode exhibits excellent response performance to glucose with linear range from 2 x 10(-6) to 12 x 10(-3) M and fast response time within 7s. Due to the selective permeability of PMPD, the enzyme electrode also shows good anti-interference to uric acid and ascorbic acid. The Michaelis-Menten constant km and the maximum current density imax of the enzyme electrode were 9.34 x 10(-3) M and 917.43 microA cm(-2), respectively. Furthermore, this glucose biosensor also has good stability and reproducibility.  相似文献   

5.
An enzyme sensor system has been developed to assess the freshness level in fish tissue. The system was designed to measure the K value, the concentration ratio of [Hx + HxR] and [Hx + HxR + IMP], where Hx, HxR, and IMP are hypoxanthine, inosine and inosine-5'-monophosphate, respectively. The [Hx + HxR] concentration in tissue extract was measured by nucleoside phosphorylase and xanthine oxidase immobilized on a preactivated nylon membrane and attached to the tip of a polarographic electrode. The electrode amperometrically detected the products of degradation, hydrogen peroxide and uric acid. For determination of [IMP + HxR + Hx], IMP was first converted to HxR by nucleotidase immobilized on the wall of a polystyrene tube. The enzyme electrode consisting of nucleoside phosphorylase and xanthine oxidase provided excellent reproducible results for at least 40 repeated assays and immobilized nucleotidase was good for at least 40 assays as well. The K value for each sample could be determined in ca. 10 min. When applied to K value measurements in several fish meats, the results obtained agreed well with those obtained by the conventional enzymatic method.  相似文献   

6.
A mediatorless biosensor for putrescine using multiwalled carbon nanotubes   总被引:5,自引:0,他引:5  
Poly(diallyldimethylammonium) chloride, having a capability of dispersing multiwalled carbon nanotubes (MWCNTs), permits the modification of electrode surfaces. Together with putrescine oxidase, a MWCNT modified glassy carbon electrode was constructed for the development of a mediatorless putrescine biosensor. Nanoscale "dendrites" of MWCNTs were reasoned to form a network, projecting outward from the electrode surface acting like bundled ultra-microelectrodes, thereby permitting access to the active site and facilitating direct electron transfer to the immobilized enzyme. Our biosensor was capable of efficiently monitoring the direct electroactivity of putrescine oxidase at the electrode surface. Direct electron transfer permits the detection of putrescine at negative potentials, circumventing the interference of endogenous ascorbic and uric acids, which often complicate the analysis of important compounds in plasma. Compared with the most common interfering species, such as spermine, spermidine, cadaverine, and histamine, a detection limit of 5 microM and a response 20 times greater were found for putrescine. Tests performed on plasma of cancerous mice demonstrated that the detection of putrescine could be carried out very quickly on mammalian plasma without previous purification.  相似文献   

7.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5–10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non‐recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost‐effective option in the management of hyperuricemia.  相似文献   

8.
Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors.  相似文献   

9.
An electrochemical biosensor based on a glassy carbon (GC) electrode chemically modified with the perfluorinated cation-exchange polymer Nafion and methyl viologen (MV) is described. The enzyme was immobilized by cross-linking with glutaraldehyde in the presence of bovine serum albumin (BSA), methyl viologen and Nafion. Operating variables such as the enzyme/BSA ratio, cross-linking time in glutaraldehyde vapor, methyl viologen and Nafion percentages were investigated with regard to their influence on the biosensor sensitivity by using glucose oxidase as the enzyme model due to its high stability and low cost. The glutamate biosensor was elaborated by using optimized parameters and its electrochemical properties were investigated by cyclic voltammetry, amperometry and by electrochemical impedance spectroscopy. The glutamate biosensor shows a detection limit of 20 microM and a linear range extended to 0.75 mM. Its selectivity was tested with 15 different amino acids, each with a concentration of 20 microM, 25 microM acetaminophen, 20 microM uric acid and 200 microM ascorbic acid. No amperometric response was observed for the interfering species. This good selectivity allows glutamate detection in biological media without previous separation of the analyte.  相似文献   

10.
A flow injection analysis (FIA) biosensor system for the determination of phosphate was constructed using immobilized nucleoside phosphorylase and xanthine oxidase and an amperometric electrode (platinum vs silver/silver chloride, polarized at 0.7 V). When a phosphate-containing sample was injected into the detection cell, phosphate reacted with inosine in the carrier buffer to produce hypoxanthine and ribose-1-phosphate in the presence of nucleoside phosphorylase. Hypoxanthine was then oxidized by xanthine oxidase to uric acid and hydrogen peroxide, which were both detected by the amperometric electrode. The response of the FIA biosensor system was linear up to 100 microM phosphate, with a minimum detectable concentration of 1.25 microM phosphate. Each assay could be performed in 5-6 min and the system could be used for about 160 repeated analyses. This system was applicable for the determination of phosphate in various food products and plasma, and the results obtained agreed well with those of the enzymatic assay.  相似文献   

11.
Boron-doped diamond has drawn much attention in electrochemical sensors. However there are few reports on non-doped diamond because of its weak conductivity. Here, we reported a glucose biosensor based on electrochemical pretreatment of non-doped nanocrystalline diamond (N-NCD) modified gold electrode for the selective detection of glucose. N-NCD was coated on gold electrode and glucose oxidase (GOx) was immobilized onto the surfaces of N-NCD by forming amide linkages between enzyme amine residues and carboxylic acid groups on N-NCD. The anodic pretreatment of N-NCD modified electrode not only promoted the electron transfer rate in the N-NCD thin film, but also resulted in a dramatic improvement in the reduction of the dissolved oxygen. This performance could be used to detect glucose at negative potential through monitoring the current change of oxygen reduction. The biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA). A wide linear calibration range from 10 microM to 15 mM and a low detection limit of 5 microM were achieved for the detection of glucose.  相似文献   

12.
d-Amino acid oxidase (DAAO) purified from goat kidney was immobilized covalently via N-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) chemistry onto poly indole 5-carboxylic acid (Pin5-COOH)/zinc sulfide nanoparticles (ZnSNPs) hybrid film electrodeposited on surface of an Au electrode. A highly sensitive d-amino acid biosensor was constructed using this enzyme electrode as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through potentiostat. The biosensor showed optimum response within 3 s at pH 7.5 and 35 °C, when polarized at 0.15 V vs. Ag/AgCl. There was a linear relationship between biosensor response (mA) and d-alanine concentration in the range 0.001–2.0 mM. The sensitivity of the biosensor was 58.85 μA cm?2 mM?1 with a detection limit of 0.001 mM (S/N = 3). The enzyme electrode was used 120 times over a period of 2 months when stored at 4 °C. The biosensor has an advantage over earlier enzyme sensors that it has no leakage of enzyme during reuse and is unaffected by the external environment due to the protective layer of poly indole-5-carboxylic acid film. The biosensor was evaluated and employed for measurement of d-amino acid level in fruits and vegetables.  相似文献   

13.
采用紫外分光光度法检测齿孔酸在体外对黄嘌呤氧化酶的作用,并进行动力学研究探讨其作用机制;采用酵母联合氧嗪酸钾诱导高尿酸血症小鼠模型,观察齿孔酸对高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性及血糖血脂的影响。研究发现,齿孔酸体在外能抑制黄嘌呤氧化酶活性,降低高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性,同时明显降低空腹血糖、总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平,升高高密度脂蛋白胆固醇水平,提高口服糖耐受量。结果表明,齿孔酸是黄嘌呤氧化酶竞争性抑制剂,还能缓解高尿酸血症小鼠糖脂代谢紊乱,对高尿酸血症及痛风的防治具有潜在意义。  相似文献   

14.
采用紫外分光光度法检测齿孔酸在体外对黄嘌呤氧化酶的作用,并进行动力学研究探讨其作用机制;采用酵母联合氧嗪酸钾诱导高尿酸血症小鼠模型,观察齿孔酸对高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性及血糖血脂的影响。研究发现,齿孔酸体在外能抑制黄嘌呤氧化酶活性,降低高尿酸血症小鼠血清尿酸水平、血清黄嘌呤氧化酶活性、肝脏黄嘌呤氧化酶活性,同时明显降低空腹血糖、总胆固醇、甘油三酯、低密度脂蛋白胆固醇水平,升高高密度脂蛋白胆固醇水平,提高口服糖耐受量。结果表明,齿孔酸是黄嘌呤氧化酶竞争性抑制剂,还能缓解高尿酸血症小鼠糖脂代谢紊乱,对高尿酸血症及痛风的防治具有潜在意义。  相似文献   

15.
Tumor lysis syndrome (TLS) is a serious complication in patients with hematological malignancies. Massive lysis of tumor cells can lead to hyperuricemia, hyperkalemia, hyperphosphatemia and hypocalcaemia. These metabolic disturbances may result in renal failure, because of precipitation of uric acid crystals and calcium phosphate salts in the kidney. The standard prophylaxis or treatment of hyperuricemia consists of decreasing uric acid production with allopurinol and facilitating its excretion by urinary alkalinization and hyperhydration. By inhibiting the enzyme xanthine oxidase, allopurinol blocks the conversion of hypoxanthine and xanthine into uric acid. An alternative treatment is urate oxidase which oxidates uric acid into allantoin. Allantoin is 5-10 times more soluble than uric acid and is therefore excreted easily. In several clinical trials rasburicase, the recombinant form of urate oxidase, has shown to be very effective in preventing and treating hyperuricemia. Rasburicase, in contrast with the non-recombinant form of urate oxidase uricozyme, is associated with a low incidence of hypersensitivity reactions. In addition to the demonstrated clinical benefit, rasburicase also proved to be a cost-effective option in the management of hyperuricemia.  相似文献   

16.
The possibility of using soluble cross-linked enzyme-albumin polymers as a means of enzyme therapy for the treatment of certain enzyme deficiency diseases is investigated. The hyperuricemic Dalmatian coach hound is used as an experimental animal and the enzyme uricase (urate oxidase) as the administered enzyme. Chemically cross-linking uricase with an excess of canine albumin yields a soluble enzyme polymer that is significantly more heat stable and resistant to proteolytic activity than the native enzyme. Intravenous administration of similar amounts of enzyme in the native or polymeric form indicated that the “solubilized” enzyme survived in the circulation for a longer period of time (clearance half-time of 26 hours as opposed to 4 hours for the native enzyme) and was more effective in lowering plasma uric acid levels for longer periods. In vivo administration of the native enzyme lowered uric acid levels by about 35% with a return to normal levels with a half-time of about 24 hours. Subsequent injections of native uricase proved less effective and produced a severe hypersensitivity reaction following the third injection. No such adverse reactions or decreased activity of the administered “solubilized” uricase-albumin polymers were observed. The plasma uric acid levels were decreased by about 40% and only after 48 hours did the substrate levels begin to rise towards their resting levels.  相似文献   

17.
Conductive polymer nanotubules of 1,2-diaminobenzene (1,2-DAB) were prepared using a porous polycarbonate membrane template, placed on a Pt foil and used to support the polymer, then, the electropolymerisation was performed by chronocoulometry. The obtained conductive polymer nanostructures were then placed on Pt electrode and used to support highly dispersed prussian blue (PB), which acts as the active component for H2O2 detection. The observed good stability of PB as catalyst of H2O2 was related to the presence of organic non-conventional conducting polymers in a composite nanostructured film. These nanostructured polymer/PB composite films were also characterised by scanning electron microscopy (SEM) and Raman spectroscopy. The non-conventional conducting polymer nanotubules/PB modified Pt electrodes were tested by cyclic voltammeter for stability at different pH values, then, by amperometry, for hydrogen peroxide, ascorbic acid, acetaminophen, uric acid and acetylcholine. Glucose oxidase (GOD), lactate oxidase (LOD), L-amino acid oxidase (L-AAOD), alcohol oxidase (AOD), glycerol-3-phosphate oxidase (GPO), lysine oxidase (LyOx), and choline oxidase (ChOx) were immobilised on PB layer supported on 1,2-diaminobenzene (1,2-DAB) nanotubules onto the Pt electrodes. Different strategies for enzyme immobilisation were performed and used. Analytical parameters such as reproducibility, interference rejection, response time, storage and operational stability of the sensors have been studied and optimised. Results provide a guide to design high sensitive, stable and interference-free biosensors. The glucose biosensors assembled with nanostructured poly(1,2-DAB) showed a detection limit of 5 x 10(-5) mol l(-1), a wide linearity range (5 x 10(-5) to 5 x 10(-3) mol l(-1)), a high selectivity, a stability of 3 months at 4 degrees C, and at least 4 weeks at room temperature. Similar analytical parameters and stability were also studied for L-(+)-lactic acid, L-leucine, ethanol, glycerol-3-phosphate, lysine, and choline biosensors.  相似文献   

18.
Periodic checks of fish health and the rapid detection of abnormalities are thus necessary at fish farms. Several studies indicate that blood glucose levels closely correlate to stress levels in fish and represent the state of respiratory or nutritional disturbance. We prepared a wireless enzyme sensor system to determine blood glucose levels in fish. It can be rapidly and conveniently monitored using the newly developed needle-type enzyme sensor, consisting of a Pt-Ir wire, Ag/AgCl paste, and glucose oxidase. To prevent the effects of interfering anionic species, such as uric acid and ascorbic acid, on the sensor response, the Pt-Ir electrode was coated with Nafion, and then glucose oxidase was immobilized on the coated electrode. The calibration curve of the glucose concentration was linear, from 0.18 to 144mg/dl, and the detection limit was 0.18mg/dl. The sensor was used to wirelessly monitor fish glucose levels. The sensor-calibrated glucose levels and actual blood glucose levels were in excellent agreement. The fluid of the inner sclera of the fish eyeball (EISF) was a suitable site for sensor implantation to obtain glucose sample. There was a close correlation between glucose concentrations in the EISF and those in the blood. Glucose concentrations in fish blood could be monitored in free-swimming fish in an aquarium for 3 days.  相似文献   

19.
Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.  相似文献   

20.
An uric acid biosensor fabricated from a uricase-immobilized eggshell membrane and an oxygen electrode was presented. The detection schemes involve the enzymatic reactions of the uricase leading to the depletion of dissolved oxygen level upon exposure to uric acid solution. The decrease in oxygen level was monitored and related to the uric acid concentration. The scanning electron micrographs show the microstructure of the eggshell membrane within which the uricase is successfully immobilized. The effects of enzyme loading, pH, temperature, and phosphate buffer concentration on the response of the biosensor were investigated in detail. The uric acid biosensor has a linear response range of 4.0-640 microM with a detection limit of 2.0 microM (S/N=3). The response time was less than 100 s. The biosensor exhibited good repeatable response to a 0.10mM uric acid solution with a relative standard deviation of 3.1% (n=7). The reproducibility of fabrication of the biosensors using four different membranes was good with a R.S.D. of 3.2%. The biosensor showed extremely good stability with a shelf-life of at least 3 months. Some common potential interferents in samples such as glucose, urea, ascorbic acid, lactic acid, glycine, DL-alpha-alanine, DL-cysteine, KCl, NaCl, CaCl2, MgSO4, and NH4Cl showed no interferences on the response of the uric acid biosensor. The biosensor was successfully applied to determine the uric acid level in some human serum and urine samples, and the results agreed well with those obtained by a commercial colorimetric assay kit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号