首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
1. The characteristics of benzofuroxan (benzofurazan 1-oxide, benzo-2-oxa-1,3-diazole N-oxide) that relate to its application as a reactivity probe for the study of environments of thiol groups are discussed. 2. To establish a kinetic and mechanistic basis for its use as a probe, a kinetic study of its reaction with 2-mercaptoethanol was carried out. 3. This reaction appears to proceed by a rate-determining attack of the thiolate ion on one of the electrophilic centres of benzofuroxan (possibly C-6) to provide a low steady-state concentration of an intermediate adduct; rapid reaction of this adduct with a second molecule of thiol gives the disulphide and o-benzoquinone dioxime. 4. The effects of the different types of environment that proteins can provide on the kinetic characteristics of reactions of thiol groups with benzofuroxan are delineated. 5. Benzofuroxan was used as a thiolspecific reactivity probe to investigate the active centres of papain (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). The results support the concept that the active centres of all three enzymes either contain a nucleophilic thiolate ion whose formation is characterized by a pKa of 3-4 and whose reaction with an electrophile can be assisted by interaction of a site of high electron density in the electrophile with active-centre imidazolium ion of pKa 8-9, or can provide such ions by protonic redistribution in enzyme-reagent or enzyme-substrate complexes.  相似文献   

2.
Benzofuroxan reacts with the catalytic-site thiol group of actinidin (EC 3.4.22.14, the cysteine proteinase from Actinidia chinensis) to produce stoicheiometric amounts of the chromophoric reduction product, o-benzoquinone dioxime, and of a catalytically inactive derivative of actinidin that is devoid of thiol and that is assumed to contain, initially at least, the sulphenic acid of cysteine-25. A similar result applies also to papain (EC 3.4.22.2). The rate of o-benzoquinone dioxime formation is neither increased by inclusion of 2-mercaptoethanol or hydroxylamine in the reaction mixture nor decreased by changing the solvent from H2O to 2H2O. The change of solvent was shown to be without effect also on the rate of reaction of benzofuroxan with papain. These results suggest that the reactions of benzofuroxan with both actinidin and papain involve rate-determining attack of the catalytic-site thiol group to produce an intermediate adduct that then reacts rapidly with water to form enzyme sulphenic acid and o-benzoquinone dioxime. The pH-dependence of the second-order rate constant for the reaction of benzofuroxan with actinidin was determined in the pH range 4.3-10.2. In marked contrast with the analogous reaction of papain (reported by Shipton & Brocklehurst [(1977) Biochem. J. 167, 799-810] ) the pH-k profile for the actinidin reaction clearly contains a sigmoidal component with pKa 5.5, in which k increases with decreasing pH. These data together with the molecular pKa values for S-/ImH+ ion-pair formation and decomposition (3.0 and 9.6) suggest that the combined nucleophilic-electrophilic reactivity of the ion-pair of actinidin might be controlled by the state of ionization of another ionizing group, associated with the molecular pKa of 5.5. The pH-dependence of k for the reaction of actinidin with benzofuroxan at 25 degrees C at I 0.1 in aqueous buffers containing 6.7% (v/v) ethanol is probably adequately described by: k = k1/(1 + [H+]/KI + KII/[H+]) + k2/(1 + [H+]/KII + KIII/ [H+] + k3/(1 + [H+]/KIII) in which kI = 2.55 M -1 X s -1, k2 = 1.35 M -1, k3 = 0.93 M -1 X s -1, pKI = 3.0, pKII = 5.5 and pKIII = 9.6. By contrast, the analogous reaction of papain may be described by the same equation but with kI = 0, k2 = 2.2 M -1 X s -1, k3 = 1.3 M -1 X s -1, pKII = 3.6 and pKIII = 9.0.  相似文献   

3.
Benzofuroxan reacts with the catalytic-site thiol group of cathepsin B (EC 3.4.22.1) to produce stoichiometric amount of the chromophoric reduction product, o-benzoquinone dioxime. In a study of the pH-dependence of the kinetics of this reaction, most data were collected for the bovine spleen enzyme, but the more limited data collected for the rat liver enzyme were closely similar both in the magnitude of the values of the second-order rate constants (k) and in the shape of the pH-k profile. In acidic and weakly alkaline media, the reaction is faster than the reactions of benzofuroxan with some other cysteine proteinases. For example, in the pH region around 5-6, the reaction of cathepsin B is about 10 times faster than that of papain, 15 times faster than that of stem bromelain and 6 times faster than that of ficin. The pH-dependence of k for the reaction of cathepsin B with benzofuroxan was determined in the pH range 2.7-8.3. In marked contrast with the analogous reactions of papain, ficin and stem bromelain [reported by Shipton & Brocklehurst (1977) Biochem. J. 167, 799-810], the pH-k profile for the cathepsin B reaction contains a sigmoidal component with pKa 5.2 in which k increases with decrease in pH. This modulation of the reactivity of the catalytic-site -S-/-ImH+ ion-pair state of cathepsin B (produced by protonic dissociation from -SH/-ImH+ with pKa approx. 3) towards a small, rigid, electrophilic reagent, in a reaction that appears to involve both components of the ion-pair for efficient reaction, suggests that the state of ionization of a group associated with a molecular pKa of approx. 5 may control ion-pair geometry. This might account for the remarkable finding [reported by Willenbrock & Brocklehurst (1984) Biochem. J. 222, 805-814] that, although the ion-pair appears to be generated in cathepsin B as the pH is increased across pKa 3.4, catalytic competence is not generated until the pH is increased across pKa 5-6.  相似文献   

4.
1. A convenient method of preparation of jack-bean urease (EC3.5.1.5) involving covalent chromatography by thiol-disulphide interchange is described. 2. Urease thus prepared has specific activity comparable with the highest value yet reported (44.5 +/- 1.47 kat/kg, Km = 3.32 +/- 0.05 mM; kcat. = 2.15 X 10(4) +/- 0.05 X 10(4)s-1 at pH7.0 and 38 degrees C). 3. Titration of the urease thiol groups with 2,2'-dipyridyl disulphide (2-Py-S-S-2-Py) and application of the method of Tsou Chen-Lu [(1962) Sci. Sin. 11, 1535-1558] suggests that the urease molecule (assumed to have mol.wt. 483000 and epsilon280 = 2.84 X 10(5) litre-mol-1-cm-1) contains 24 inessential thiol groups of relatively high reactivity (class-I), six 'essential' thiol groups of low reactivity (class-II) and 54 buried thiol groups (class-III) which are exposed in 6M-guanidinium chloride. 4. The reaction of the class-I thiol groups with 2-Py-S-S-2-Py was studied in the pH range 6-11 at 25 degrees C(I = 0.1 mol/l) by stopped-flow spectrophotometry, and the analogous reaction of the class-II thiol groups by conventional spectrophotometry. 5. The class-I thiol groups consist of at least two sub-classes whose reactions with 2-Py-S-S-2-Py are characterized by (a) pKa = 9.1, k = 1.56 X 10(4)M-1-s-1 and (b) pKa = 8.1, k = 8.05 X 10(2)M-1-s-1 respectively. The reaction of the class-II thiol groups is characterized by pKa = 9.15 and k = 1.60 X 10(2)M-1-s-1. 6. At pH values 7-8 the class-I thiol groups consist of approx. 50% class-Ia groups and 50% class-Ib groups. The ratio class Ia/class Ib decreases an or equal to approx. 9.5, and at high pH the class-I thiol groups consist of at most 25% class-Ia groups and at least 75% class-Ib groups. 7. The reactivity of the class-II thiol groups towards 2-Py-S-S-2-Py is insensitive to the nature of the group used to block the class-I thiols. 8. All the 'essential' thiol groups in urease appear to be eeactive only as uncomplicated thiolate ions. The implications of this for the active-centre chemistry of urease relative to that of the thiol proteinases are discussed.  相似文献   

5.
1.2,2'-Dipyridyl disulphide (2-Py-S-S-2-Py) and n-propyl 2-pyridyl disulphide (propyl-S-S-2-Py) were used as two-protonic-state reactivity probes to investigate the active centre of papain (EC 3.4.22.2).2. The existence of a striking rate optimum at pH approx. 4 in the reaction of papain not only with the symmetrical probe but also with the unsymmetrical probe is shown to constitute compelling evidence that the thiolate ion component of the cysteine-25-histidine-159 interactive system of papain possesses appreciable nucleophilic character. It is not a necessary requirement that the probe reagent should engage the imidazolium ion of histidine-159 in hydrogen-bonding for the sulphur atom of the interactive system to display nucleophilic character. The single proton-binding site of propyl-S-S-2-Py cannot simultaneously interrupt the active-centre ion pair and provide for rate enhancement as the pH is lowered towards 4. The possible implication of this for the mechanism of papain-catalysed hydrolysis is discussed. 3. The suspected difference in the active centres of papain and ficin (EC 3.4.22.3), which could be a lack in ficin of a carboxy group conformationally equivalent to that of aspartic acid-158 of papain is confirmed. The reactivity of the papain thiol group towards both probe reagents is controlled by two ionizations with pKa close to 4 that are positively co-operative. 4. In the reaction of papain with 2-Py-S-S-2-Py. the reactivity appears to be controlled also by an addition ionization with pKa approx. 5. Possible origins of this additional ionization are discussed. K. The spectral and ionization characteristics of propyl-S-S-2-Py are reported. 6. The reagent reacts rapidly with thiol groups at the sulphur atom distal from the pyridyl ring to provide, at pH values below 9, stoicheiometric release of 2-thiopyridone. This property, together with the ability of the reagent markedly to increase its electrophilicity consequent on protonation, suggests alkyl-2-pyridyl disulphides in general as valuable two-protonic-state reactivity probes with exceptional specificity for thiol groups.  相似文献   

6.
Aldose reductase-mediated reaction of glyceraldehyde with enzyme-bound NADP+ gives different products depending on the enantiomer used. D-Glyceraldehyde reacts to form a chromophore (336 nm) similar to the covalent NADP-glycolaldehyde adduct characterized previously [Grimshaw et al. (1990) Biochemistry 29, 9936-9946]. L-Glyceraldehyde, however, reacts in a slow steady-state process to form an additional chromophore whose spectral properties (lambda max 290 nm, epsilon approximately 16,700 M-1cm-1) suggest that hydration of the nicotinamide 5,6-double bond has occurred. Several mechanisms are proposed to explain this unique stereoisomer-dependent change in reaction pathway.  相似文献   

7.
Ultraviolet difference spectroscopy of the binary complex of isozyme 4-4 of rat liver glutathione S-transferase with glutathione (GSH) and the enzyme alone or as the binary complex with the oxygen analogue, gamma-L-glutamyl-L-serylglycine (GOH), at neutral pH reveals an absorption band at 239 nm (epsilon = 5200 M-1 cm-1) that is assigned to the thiolate anion (GS-) of the bound tripeptide. Titration of this difference absorption band over the pH range 5-8 indicates that the thiol of enzyme-bound GSH has a pKa = 6.6, which is about 2.4 pK units less than that in aqueous solution and consistent with the kinetically determined pKa previously reported [Chen et al. (1988) Biochemistry 27, 647]. The observed shift in the pKa between enzyme-bound and free GSH suggests that about 3.3 kcal/mol of the intrinsic binding energy of the peptide is utilized to lower the pKa into the physiological pH range. Apparent dissociation constants for both GSH and GOH are comparable and vary by a factor of less than 2 over the same pH range. Site occupancy data and spectral band intensity reveal large extinction coefficients at 239 nm (epsilon = 5200 M-1 cm-1) and 250 nm (epsilon = 1100 M-1 cm-1) that are consistent with the existence of either a glutathione thiolate (E.GS-) or ion-paired thiolate (EH+.GS-) in the active site. The observation that GS- is likely the predominant tripeptide species bound at the active site suggested that the carboxylate analogue of GSH, gamma-L-glutamyl-(D,L-2-aminomalonyl)glycine, should bind more tightly than GSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have characterized by NMR spectroscopy the three active site (His80, His85, and His205) and two non-active site (His107 and His114) histidines in the 34 kDa catalytic domain of Cellulomonas fimi xylanase Cex in its apo, noncovalently aza-sugar-inhibited, and trapped glycosyl-enzyme intermediate states. Due to protection from hydrogen exchange, the level of which increased upon inhibition, the labile 1Hdelta1 and 1H epsilon1 atoms of four histidines (t1/2 approximately 0.1-300 s at 30 degrees C and pH approximately 7), as well as the nitrogen-bonded protons in the xylobio-imidazole and -isofagomine inhibitors, could be observed with chemical shifts between 10.2 and 17.6 ppm. The histidine pKa values and neutral tautomeric forms were determined from their pH-dependent 13C epsilon1-1H epsilon1 chemical shifts, combined with multiple-bond 1H delta2/epsilon1-15N delta1/epsilon2 scalar coupling patterns. Remarkably, these pKa values span more than 8 log units such that at the pH optimum of approximately 6 for Cex activity, His107 and His205 are positively charged (pKa > 10.4), His85 is neutral (pKa < 2.8), and both His80 (pKa = 7.9) and His114 (pKa = 8.1) are titrating between charged and neutral states. Furthermore, upon formation of the glycosyl-enzyme intermediate, the pKa value of His80 drops from 7.9 to <2.8, becoming neutral and accepting a hydrogen bond from an exocyclic oxygen of the bound sugar moiety. Changes in the pH-dependent activity of Cex due to mutation of His80 to an alanine confirm the importance of this interaction. The diverse ionization behaviors of the histidine residues are discussed in terms of their structural and functional roles in this model glycoside hydrolase.  相似文献   

9.
Biliverdin reductase (molecular form 1, EC 1.3.1.24, bilirubin:NAD(P)+ oxidoreductase) carries three thiol residues. Only one of them could be alkylated when a ratio N-ethylmaleimide (NEM)/mol enzyme's SH = 90 was used. The alkylation of this thiol group inhibited the conversion of molecular form 1 to its dimer, molecular form 3; however, it did not inhibit the enzymatic activity. At a ratio of NEM/enzyme's SH = 300, two thiol residues were alkylated and the activity of the enzyme was totally inhibited. The third thiol group could not be alkylated either by NEM or by iodoacetamide. Biliverdin as well as the co-substrate NADPH protected the thiol residue essential for the enzymatic activity from alkylation. Spectroscopic evidence was obtained that this thiol group binds covalently to the C-10 of biliverdin to form a rubinoid adduct. The presence of a lysine residue, which is also essential for the enzymatic activity, could be inferred from the fact that by reduction of the Schiff base formed by the enzyme with pyridoxal phosphate the catalytic activity was irreversibly abolished. The location of a lysine residue in the vicinity of the thiol group involved in the catalytic activity was evident when the enzyme was treated with o-phthalaldehyde. The inactivation of the enzymatic activity was coincident with the formation of the fluorescent isoindole derivative which originates when the thiol and epsilon-NH2 groups are located about 3 A apart. The presence of a positively charged ammonium ion in the vicinity of the NADPH binding site was inferred from the shifts in the UVmax of NADPH from 340 nm to 327 nm and of 3-acetyl NADPH from 360 nm to 348 nm when the pyridine nucleotides bind to the reductase. The involvement of arginine residues in the enzymatic activity was established by inhibition of the latter after reaction with butanedione. This inhibition was totally protected by NADPH but not by biliverdin. The similarity of the structural features of biliverdin reductase with those of several dehydrogenases is discussed.  相似文献   

10.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

11.
Thioredoxin reductase (TRR), a member of the pyridine nucleotide-disulfide oxidoreductase family of flavoenzymes, undergoes two sequential thiol-disulfide interchange reactions with thioredoxin during catalysis. In order to assess the catalytic role of each nascent thiol of the active site disulfide of thioredoxin reductase, the 2 cysteines (Cys-136 and Cys-139) forming this disulfide have been individually changed to serines by site-directed mutageneses of the cloned trxB gene of Escherichia coli. Spectral analyses of TRR(Ser-136,Cys-139) as a function of pH and ionic strength have revealed two pKa values associated with the epsilon 456, one of which increases from 7.0 to 8.3 as the ionic strength is increased, and a second at 4.4 which is seen only at high ionic strength. epsilon 458 of wild type TRR(Cys-136,Cys-139) and epsilon 453 of TRR(Cys-136,Ser-139) are pH-independent. A charge transfer complex (epsilon 530 = 1300 M-1 cm-1), unique to TRR(Ser-136,Cys-139), has been observed under conditions of high ammonium cation concentration (apparent Kd = 54 microM) at pH 7.6. These results suggest the assignment of Cys-139 as the FAD-interacting thiol in the reduction of thioredoxin by NADPH via thioredoxin reductase. If, as with other members of this enzyme family, the two distinct catalytic functions are each carried out by a different nascent thiol, then Cys-136 would perform the initial thiol-disulfide interchange with thioredoxin. Steady state kinetic analyses of the proteins have revealed turnover numbers of 10 and 50% of the value of the wild type enzyme for TRR(Ser-136,Cys-139) and TRR(Cys-136,Ser-139), respectively, and no changes in the apparent Km values of TR(S2) or NADPH. The finding of activity in the mutants indicates that the remaining thiol can carry out interchange with the disulfide of thioredoxin, and the resulting mixed disulfide can be reduced by NADPH via the flavin.  相似文献   

12.
The reactions of papain (EC 3.4.22.2) with substrate-derived diazomethyl ketones reported by Leary, Larsen, Watanabe & Shaw [Biochemistry (1977) 16, 5857--5861] are unusual in that (i) these reagents fail to react with low-molecular-weight thiols and (ii) the rate of reaction with the papain thiol group does not decrease to near-zero values across a pKa of 4 as the pH is decreased. Existing data are shown to suggest an interpretation involving neighbouring-group participation via transient thiohemiketal formation, rate-determining protonation by imidazolium ion and alkylation on sulphur via a three-membered cyclic transition state. Implications for (a) the difference in site-specificity exhibited by halomethyl ketones in their reactions with serine proteinases and cysteine proteinases and (b) stereoelectronic requirements in the mechanism of papain-catalysed hydrolysis are discussed. The possibility of two tetrahedral intermediates between adsorptive complex and acyl-enzyme is indicated.  相似文献   

13.
The active centres of chymopapains A and B (jointly designated EC 3.4.22.6) and papaya (Carica papaya L.) peptidase A were investigated by using 2,2'-dipyridyl disulphide and 5,5'-dithiobis-(2-nitrobenzoic acid) as thiol-specific reactivity probes. Whereas the first active-centre pKa values for chymopapain B and papaya peptidase A are less than 5, is as the case for papain (EC 3.4.22.2) and ficin (EC 3.4.22.3), that for chymopapain A is about 6.8. The reason why the reactions of thiols of pKa approx. 6.5 with 2.2'-dipyridyl disulphide are essentially pH-independent in the pH range around the thiol pKa is delineated. The value of the Brønsted coefficient (beta nuc.) for the reactions of thiolate ions with the 2,2'-dipyridyl disulphide monocation appears to be smaller than its value for the corresponding reactions with the neutral disulphide.  相似文献   

14.
The second-order rate constants (k) for the reactions of 2,2'-dipyridyl disulphide (pKa2,45) with 2-mercaptoethanol (pKa9.6) and with benzimidazol-2-ylmethanethiol (pKa values 5.6 and 8.3) were determined at 25 degrees C at I 0.1 by stopped-flow spectral analysis over a wide range of pH. These were used to calculate the pH-independent second-order rate constants (k) for the reactions of neutral 2,2'-dipyridyl disulphide and of its monocation with the 2-mercaptoethanol thiolate anion (associated pKa9.6) and with the benzimidazol-2-ylmethanethiol zwitterion (associated pKa5.6). For both thiolate ions, the rate-enhancement factor (kmonocation/kneutral disulphide) is about 1.5x10(3). The dependence on pH in acidic media of k for the reaction of 2,2'-dipyridyl disulphide with actinidin, the thiol proteinase from Actinidia chinensis, was shown to differ from the forms of pH-dependence observed for the analogous reactions with papain (EC 3.4.22.2) and ficin (3.4.22.3). The reactivity of the 2,2'-dipyridyl disulphide dication and its apparent sensitivity to the presence and location of a positive charge in the attacking thiol are discussed.  相似文献   

15.
A K Knap  R F Pratt 《Proteins》1989,6(3):316-323
The RTEM-1 thiol beta-lactamase (Sigal, I.S., Harwood, B.G., Arentzen, R., Proc. Natl. Acad. Sci. U.S.A. 79:7157-7160, 1982) is inactivated by thiol-selective reagents such as iodoacetamide, methyl methanethiosulfonate, and 4,4'-dipyridyldisulfide, which modify the active site thiol group. The pH-rate profiles of these inactivation reactions show that there are two nucleophilic forms of the enzyme, EH2 and EH, both of which, by analogy with the situation with cysteine proteinases, probably contain the active site nucleophile in the thiolate form. The pKa of the active site thiol is therefore shown by the data to be below 4.0. This low pKa is thought to reflect the presence of adjacent functionality which stabilizes the thiolate anion. The low nucleophilicity of the thiolate in both EH2 and EH, with respect to that of cysteine proteinases and model compounds, suggests that the thiolate of the thiol beta-lactamase is stabilized by two hydrogen-bond donors. One of these, of pKa greater than 9.0, is suggested to be the conserved and essential Lys-73 ammonium group, while the identity of the other group, of pKa around 6.7, is less clear, but may be the conserved Glu-166 carboxylic acid. beta-Lactamase activity is associated with the EH2 form, and thus the beta-lactamase active site is proposed to contain one basic or nucleophilic group (the thiolate in the thiol beta-lactamase) and two acidic (hydrogen-bond donor) groups (one of which is likely to be the above-mentioned lysine ammonium group).  相似文献   

16.
1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed.  相似文献   

17.
The kinetics of the reactions of the active-centre thiol groups of papain (EC 3.4.22.2) and ficin (EC 3.4.22.3) with the two-protonic-state reactivity probes 2,2'-dipyridyl disulphide, n-propyl 2-pyridyl disulphide and 4-(N-aminoethyl 2'-pyridyl disulphide)- 7-nitrobenzo-2-oxa-1,3-diazole (compound I) were studied over a wide range of pH. Differences between the reactivities of ficin and papain towards the cationic forms of the alkyl 2-pyridyl disulphide probes suggest that ficin contains a cationic site without exact analogue in papain, and the striking difference in the shapes of the pH-rate profiles for the reactions of the two enzymes with compound (1) suggests differences in the mobilities or dispositions of the active-centre histidine imidazole groups with respect to relevant hydrophobic binding areas. The evidence from reactivity-probe studies that the papain catalytic mechanism involves substantial repositioning of the active-centre imidazole group during the catalytic act does not apply also to ficin. If ficin contains an aspartic acid residue analogous to aspartic acid-158 in papain, the pKa of its carboxy group is probably significantly lower than the pKa of the analogous group in papain.  相似文献   

18.
Benzofuroxan derivatives have been shown to inhibit the growth of Trypanosoma cruzi, the etiological agent of Chagas' disease. Therefore, 2D- and 3D-QSAR models of their in vitro antichagasic activity were developed. Six new derivatives were synthesized to complete a final set of 26 structurally diverse benzofuroxans. The 2D-QSAR model (r = 0.939, r(adj)(2) = 0.849) was generated using multiple regression analysis of tabulated substituents' physicochemical properties and indicator variables. In addition, a 3D-QSAR model (r(2) = 0.997, q(2) = 0.802) was obtained using a comparative molecular field analysis (CoMFA). Due to the well-known benzofuroxan tautomerism, in both approaches (2D- and 3D-QSAR) it was necessary to include an indicator variable to consider the N-oxide position (I(6)). This parameter was established using low-temperature NMR experiments. Both QSAR models identified the electrophilic character of the substituent alpha-atom as a requirement for activity. Further support was found using a density functional theory (DFT) approach.  相似文献   

19.
D-aspartate oxidase from beef kidney. Purification and properties   总被引:1,自引:0,他引:1  
The flavoprotein D-aspartate oxidase (EC 1.4.3.1) has been purified to homogeneity from beef kidney cortex. The protein is a monomer with a molecular weight of 39,000 containing 1 molecule of flavin. The enzyme as isolated is a mixture of a major active form containing FAD and a minor inactive form containing 6-hydroxy-flavin adenine dinucleotide (6-OH-FAD). The absorption and fluorescence spectral properties of the two forms have been studied separately after reconstitution of the apoprotein with FAD or 6-OH-FAD, respectively. FAD-reconstituted D-aspartate oxidase has flavin fluorescence, shows characteristic spectral perturbation upon binding of the competitive inhibitor tartaric acid, is promptly reduced by D-aspartic acid under anaerobiosis, reacts with sulfite to form a reversible covalent adduct, stabilizes the red anionic form of the flavin semiquinone upon photoreduction, and yields the 3,4-dihydro-FAD-form after reduction with borohydride. A Kd of 5 X 10(-8) M was calculated for the binding of FAD to the apoprotein. 6-OH-FAD-reconstituted D-aspartate oxidase has no flavin fluorescence, shows no spectral perturbation in the presence of tartaric acid, is not reduced by D-aspartic acid under anaerobiosis, does not stabilize any semiquinone upon photoreduction, and does not yield the 3,4-dihydro-form of the coenzyme when reduced with borohydride; the enzyme stabilizes the p-quinoid anionic form of 6-OH-FAD and lowers its pKa more than two pH units below the value observed for the free flavin. The general properties of the enzyme thus resemble those of the dehydrogenase/oxidase class of flavoprotein, particularly those of the amino acid oxidases.  相似文献   

20.
1. A rapid method of isolation of fully active actinidin, the cysteine proteinase from Actinidia chinensis (Chinese gooseberry or kiwifruit), by covalent chromatography, was devised. 2. The active centre of actinidin was investigated by using n-propyl 2-pyridyl disulphide, 4-(N-aminoethyl 2'-pyridyl disulphide)-7-nitrobenzo-2-oxa-1,3-diazole and 4-chloro-7-nitrobenzofurazan as reactivity probes. 3. The presence in actinidin in weakly acidic media of an interactive system containing a nucleophilic sulphur atom was demonstrated. 4. The pKa values (3.1 and 9.6) that characterize this interactive system are more widely separated than those that characterize the interactive active centre systems of ficin (EC 3.4.22.3) and papain (EC 3.4.22.2) (3.8 and 8.6, and 3.9 and 8.8 respectively). 5. Actinidin was shown to resemble ficin rather than papain in (i) the disposition of the active-centre imidazole group with respect to hydrophobic binding areas, and (ii) the inability of the active-centre aspartic acid carboxy group to influence the reactivity of the active-centre thiol group at pH values of about 4. 6. The implications of the results for one-state and two-state mechanisms for cysteine-proteinase catalysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号