首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Understanding how multiple mutations interact to jointly impact multiple ecologically important traits is critical for creating a robust picture of organismal fitness and the process of adaptation. However, this is complicated by both environmental heterogeneity and the complexity of genotype‐to‐phenotype relationships generated by pleiotropy and epistasis. Moreover, little is known about how pleiotropic and epistatic relationships themselves change over evolutionary time. The soil bacterium Myxococcus xanthus employs several distinct social traits across a range of environments. Here, we use an experimental lineage of M. xanthus that evolved a novel form of social motility to address how interactions between epistasis and pleiotropy evolve. Specifically, we test how mutations accumulated during selection on soft agar pleiotropically affect several other social traits (hard agar motility, predation and spore production). Relationships between changes in swarming rate in the selective environment and the four other traits varied greatly over time in both direction and magnitude, both across timescales of the entire evolutionary lineage and individual evolutionary time steps. We also tested how a previously defined epistatic interaction is pleiotropically expressed across these traits. We found that phenotypic effects of this epistatic interaction were highly correlated between soft and hard agar motility, but were uncorrelated between soft agar motility and predation, and inversely correlated between soft agar motility and spore production. Our results show that ‘epistatic pleiotropy’ varied greatly in magnitude, and often even in sign, across traits and over time, highlighting the necessity of simultaneously considering the interacting complexities of pleiotropy and epistasis when studying the process of adaptation.  相似文献   

3.
The feeding efficiency of microbial predators depends on both the availability of various prey species and abiotic variables. Myxococcus xanthus is a bacterial predator that searches for microbial prey by gliding motility, and then kills and lyses its prey with secreted compounds. We manipulated three ecological variables to examine their effects on the predatory performance of M. xanthus to better understand its behavior and how it affects prey populations. Experiments were designed to determine how surface solidity (hard vs soft agar), density of prey patches (1 vs 2 cm grids), and type of prey (Gram-positive Micrococcus luteus vs Gram-negative Escherichia coli) affect predatory swarming and prey killing by M. xanthus. The prey were dispersed in patches on a buffered agar surface. M. xanthus swarms attacked a greater proportion of prey patches when patches were densely arranged on a hard-agar surface, compared with either soft-agar surfaces or low-patch-density arrangements. These ecological variables did not significantly influence the rate of killing of individual prey within a patch, although a few surviving prey were more likely to be recovered on soft agar than on hard agar. These results indicate that M. xanthus quickly kills most nearby E. coli or M. luteus regardless of the surface. However, the ability of M. xanthus to search out patches of these prey is affected by surface hardness, the density of prey patches, and the prey species.  相似文献   

4.
Summary A large number of motility mutants of the gliding bacterium Myxococcus xanthus have been isolated and analyzed by transduction. Almost all nonmotile mutants are found to be double mutants. This is explained by the existence of two parallel and almost independent multi-gene systems controlling motility, in which case at least one mutation in each system would be required eliminate motility. Only one locus, called mgl, has been found to be shared by both systems. Wild type cells move singly and in groups. Single cells move if they carry a complete gene system A, the genes of which are described in the preceding paper. Groups of cells can move if they carry a complete gene system S, but single AS+ cells do not move. Linkage analysis reveals at least 9 different loci in system S. One class of S mutants, those mutated in the locus tgl, are conditional mutants which, after contact with tgl + cells, become temporarily motile as cell groups. Most system A mutations have little effect on fruiting but many system S mutations block it, suggesting that system S plays a role in the fruiting process.  相似文献   

5.
Myxococous xanthus cells can glide both as individual cells, dependent on A dventurous motility (A motility), and as groups of cells, dependent upon S ocial motility (S motility), Tn5-lac mutagenesis was used to generate 16 new A- and nine new S- mutations. In contrast with previous results, we find that subsets of A- mutants are defective in fruiting body morphogenesis and/or myxospore differentiation. All S- mutants are defective in fruiting body morphogenesis, consistent with previous results. Whereas some S- mutants produce a wild-type complement of spores, others are defective in the differentiation of myxospores. Therefore, a subset of the A genes and all of the S genes are critical for fruiting body morphogenesis. Subsets of both A and S genes are essential for sporulation. Three S::Tn5–lac insertions result in surprising phenotypes. Colonies of two S- mutants glide on ‘swim’ (0.35% agar) plates to form fractal patterns. These S- mutants are the first examples of a bacterium in which mutations result in fractal patterns of colonial spreading. An otherwise wild-type strain with one S- insertion resembles the frz- sglA1- mutants upon development, suggesting that this S- gene defines a new chemotaxis component in M. xanthus.  相似文献   

6.
Understanding the principles underlying the plasticity of signal transduction networks is fundamental to decipher the functioning of living cells. In Myxococcus xanthus, a particular chemosensory system (Frz) coordinates the activity of two separate motility systems (the A- and S-motility systems), promoting multicellular development. This unusual structure asks how signal is transduced in a branched signal transduction pathway. Using combined evolution-guided and single cell approaches, we successfully uncoupled the regulations and showed that the A-motility regulation system branched-off an existing signaling system that initially only controlled S-motility. Pathway branching emerged in part following a gene duplication event and changes in the circuit structure increasing the signaling efficiency. In the evolved pathway, the Frz histidine kinase generates a steep biphasic response to increasing external stimulations, which is essential for signal partitioning to the motility systems. We further show that this behavior results from the action of two accessory response regulator proteins that act independently to filter and amplify signals from the upstream kinase. Thus, signal amplification loops may underlie the emergence of new connectivity in signal transduction pathways.  相似文献   

7.
Shelud'ko  A. V.  Katsy  E. I. 《Microbiology》2001,70(5):570-575
This paper describes the formation of single polar bundles of pili on Azospirillum brasilensecells, the twitching motility of cell aggregates, and a new type of social behavior—the dispersal of bacterial cells in semiliquid agar associated with the formation of granular inclusions (the so-called Gri+phenotype)—which is an alternative to swarming (the Swa phenotype). The wild-type A. brasilensecells occurring in a semiliquid agar may show either the Swa+Gri, or SwaGri, or SwaGri+phenotype. The formation of single polar flagella (Fla) or polar bundles of pili may reflect two alternative states of A. brasilensecells. The components of the Fla system may be involved in the regulation of the phenotypic variation of azospirilla.  相似文献   

8.
Epistatic interactions can greatly impact evolutionary phenomena, particularly the process of adaptation. Here, we leverage four parallel experimentally evolved lineages to study the emergence and trajectories of epistatic interactions in the social bacterium Myxococcus xanthus. A social gene (pilA) necessary for effective group swarming on soft agar had been deleted from the common ancestor of these lineages. During selection for competitiveness at the leading edge of growing colonies, two lineages evolved qualitatively novel mechanisms for greatly increased swarming on soft agar, whereas the other two lineages evolved relatively small increases in swarming. By reintroducing pilA into different genetic backgrounds along the four lineages, we tested whether parallel lineages showed similar patterns of epistasis. In particular, we tested whether a pattern of negative epistasis between accumulating mutations and pilA previously found in the fastest lineage would be found only in the two evolved lineages with the fastest and most striking swarming phenotypes, or rather was due to common epistatic structure across all lineages arising from the generic fixation of adaptive mutations. Our analysis reveals the emergence of negative epistasis across all four independent lineages. Further, we present results showing that the observed negative epistasis is not due exclusively to evolving populations approaching a maximum phenotypic value that inherently limits positive effects of pilA reintroduction, but rather involves direct antagonistic interactions between accumulating mutations and the reintroduced social gene.  相似文献   

9.
Myxococcus xanthus has been shown to utilize both directed (tactic) and undirected (kinetic) movements during different stages of its complex life cycle. We have used time-lapse video microscopic analysis to separate tactic and kinetic behaviors associated specifically with vegetatively swarming cells. Isolated individual cells separated by a thin agar barrier from mature swarms showed significant increases in gliding velocity compared to that of similar cells some distance from the swarm. This orthokinetic behavior was independent of the frequency of reversals of gliding direction (klinokinesis) but did require both the Frz signal transduction system and S-motility. We propose that M. xanthus uses Frz-dependent, auto-orthokinetic behavior to facilitate the dispersal of cells under conditions where both cell density and nutrient levels are high.  相似文献   

10.
Myxococcus xanthus moves by gliding motility powered by type IV pili (S-motility) and distributed motor complexes (A-motility). The Frz chemosensory pathway controls reversals for both motility systems. However, it is unclear how the Frz pathway can communicate with these different systems. In this article, we show that FrzCD, the Frz pathway receptor, interacts with AglZ, a protein associated with A-motility. Affinity chromatography and cross-linking experiments showed that the FrzCD–AglZ interaction occurs between the uncharacterized N-terminal region of FrzCD and the N-terminal pseudo-receiver domain of AglZ. Fluorescence microscopy showed AglZ–mCherry and FrzCD–GFP localized in clusters that occupy different positions in cells. To study the role of the Frz system in the regulation of A-motility, we constructed aglZ frzCD double mutants and aglZ frzCD pilA triple mutants. To our surprise, these mutants, predicted to show no A-motility (A-S+) or no motility at all (A-S-), respectively, showed restored A-motility. These results indicate that AglZ modulates a FrzCD activity that inhibits A-motility. We hypothesize that AglZ–FrzCD interactions are favoured when cells are isolated and moving by A-motility and inhibited when S-motility predominates and A-motility is reduced.  相似文献   

11.
Swarming motility is considered to be a social phenomenon that enables groups of bacteria to move coordinately atop solid surfaces. The differentiated swarmer cell population is embedded in an extracellular slime layer, and the phenomenon has previously been linked with biofilm formation and virulence. The gram-negative nitrogen-fixing soil bacterium Rhizobium etli CNPAF512 was previously shown to display swarming behavior on soft agar plates. In a search for novel genetic determinants of swarming, a detailed analysis of the swarming behavior of 700 miniTn5 mutants of R. etli was performed. Twenty-four mutants defective in swarming or displaying abnormal swarming patterns were identified and could be divided into three groups based on their swarming pattern. Fourteen mutants were completely swarming deficient, five mutants showed an atypical swarming pattern with no completely smooth edge and local extrusions, and five mutants displayed an intermediate swarming phenotype. Sequence analysis of the targeted genes indicated that the mutants were likely affected in quorum-sensing, polysaccharide composition or export, motility, and amino acid and polyamines metabolism. Several of the identified mutants displayed a reduced symbiotic nitrogen fixation activity.  相似文献   

12.

Background  

Bacterial motility is a crucial factor in the colonization of natural environments. Escherichia coli has two flagella-driven motility types: swimming and swarming. Swimming motility consists of individual cell movement in liquid medium or soft semisolid agar, whereas swarming is a coordinated cellular behaviour leading to a collective movement on semisolid surfaces. It is known that swimming motility can be influenced by several types of environmental stress. In nature, environmentally induced DNA damage (e.g. UV irradiation) is one of the most common types of stress. One of the key proteins involved in the response to DNA damage is RecA, a multifunctional protein required for maintaining genome integrity and the generation of genetic variation.  相似文献   

13.
Some observations on variant strains of Myxococcus virescens B2 with special emphasis on characteristics associated with the ability to grow in dispersion are reported. The isolated strains were divided into two major classes according to their mode of growth in shaken and static liquid cultures based on casitone and casamino acids media. Strains growing in dispersion were designated D+-strains and those growing in aggregates or as films, D?-strains. Colony morphology, cell morphology, growth in liquid and on solid medium and morphogenesis were compared. The ability to grow in dispersion shown by D+-strains seemed to be associated with a smooth colony on casitone agar, inability to form typical fruiting bodies and a low linear growth rate of colonies on solid medium as compared with the D?-strains. In contrast D?-strains produced rough colonies on casitone agar, were able to fruit and evidently formed an adhesive slime in the form of fibrils extending from the cell surface. It is suggested that the observed differences depend on different envelopes of the cells in the two classes.  相似文献   

14.
Salmonella enterica serotype Typhimurium can move through liquid using swimming motility, and across a surface by swarming motility. We generated a library of targeted deletion mutants in Salmonella Typhimurium strain ATCC14028, primarily in genes specific to Salmonella, that we have previously described. In the work presented here, we screened each individual mutant from this library for the ability to move away from the site of inoculation on swimming and swarming motility agar. Mutants in genes previously described as important for motility, such as flgF, motA, cheY are do not move away from the site of inoculation on plates in our screens, validating our approach. Mutants in 130 genes, not previously known to be involved in motility, had altered movement of at least one type, 9 mutants were severely impaired for both types of motility, while 33 mutants appeared defective on swimming motility plates but not swarming motility plates, and 49 mutants had reduced ability to move on swarming agar but not swimming agar. Finally, 39 mutants were determined to be hypermotile in at least one of the types of motility tested. Both mutants that appeared non-motile and hypermotile on plates were assayed for expression levels of FliC and FljB on the bacterial surface and many of them had altered levels of these proteins. The phenotypes we report are the first phenotypes ever assigned to 74 of these open reading frames, as they are annotated as ‘hypothetical genes’ in the Typhimurium genome.  相似文献   

15.

Background  

The mglA gene from the bacterium Myxococcus xanthus encodes a 22kDa protein related to the Ras superfamily of monomeric GTPases. MglA is required for the normal function of A-motility (adventurous), S-motility (social), fruiting body morphogenesis, and sporulation. MglA and its homologs differ from all eukaryotic and other prokaryotic GTPases because they have a threonine (Thr78) in place of the highly conserved aspartate residue of the consensus PM3 (phosphate-magnesium binding) region. To identify residues critical for MglA function or potential protein interactions, and explore the function of Thr78, the phenotypes of 18 mglA mutants were characterized.  相似文献   

16.
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.  相似文献   

17.
The state of metabolic dormancy in diazotrophic bacteria Azospirillum brasilense Sp7 (non-endophytic strain) and Sp245 (endophytic strain) was found to be associated with phenotypic variability. The latter manifested itself in the extension of the spectrum of A. brasilense phenotypic variants resulting from plating of cyst-like resting cells (CRC) on solid media and was more pronounced in strain Sp7. The major colony’s morphological variants of strain Sp7 were (1) the dominant S type; (2) the highly pigmented Pg type; (3) the R type; (4) the Sm type, forming small colonies; and (5) the Sg type, forming segmented colonies. In addition to their colony morphology, the variants differed in the phenotype stability during transfers on the standard solid medium and in their motility in semisolid agar. The occurrence frequency of the phenotypic variants depended on the conditions and duration of incubation (storage) of the CRC of strain Sp7, as well as on heat treatment (at 55 and 60°C for 10 min) of the cells prior to inoculation. The maximum frequency of S → Pg transitions (up to 74%) was observed during the germination of CRC stored in a spent culture medium at −20°C for 4 months; the maximum frequency (up to 100%) of S → Sm transitions was observed after inoculation of the CRC subjected to heat treatment. The Pg variants were the most stable, whereas other types reverted rapidly to the S or Pg variant. The S variant grown in semisolid agar exhibited the mixed type of motility (Swa+Gri+, swarming and migration in the form of microcolonies); the Pg and Sg variants showed the Swa+Gri (swarming) phenotype and the Sm variant was nonmotile (SwaGri phenotype). The spectrum of phenotypic variants of the endophytic strain Sp245 was narrower than that of strain Sp7 and was represented by S, Sm, and M (mucoid) variants that differed in the patterns of cell motility: the dominant S type displayed the swarming pattern (Swa+Gri), the mucoid M type showed the mixed type (Swa+Gri+) of motility, and the Sm variant was nonmotile. The differences between the nonendophytic strain Sp7 and the endophytic strain Sp245 in their capacity for phenotypic dissociation and cell motility in semisolid media may reflect their ability to adapt to changing ambient conditions and specificity of plant-microbial interactions.  相似文献   

18.
Flagella-based motility of extremely alkaliphilic Bacillus species is completely dependent upon Na+. Little motility is observed at pH values < ∼8.0. Here we examine the number of flagella/cell as a function of growth pH in the facultative alkaliphile Bacillus pseudofirmus OF4 and a derivative selected for increased motility on soft agar plates. Flagella were produced by both strains during growth in a pH range from 7.5 to 10.3. The number of flagella/cell and flagellin levels of cells were not strongly dependent on growth pH over this range in either strain although both of these parameters were higher in the up-motile strain. Assays of the swimming speed indicated no motility at pH < 8 with 10 mM Na+, but significant motility at pH 7 at much higher Na+ concentrations. At pH 8–10, the swimming speed increased with the increase of Na+ concentration up to 230 mM, with fastest swimming at pH 10. Motility of the up-motile strain was greatly increased relative to wild-type on soft agar at alkaline pH but not in liquid except when polyvinylpyrrolidone was added to increase viscosity. The up-motile phenotype, with increased flagella/cell may support bundle formation that particularly enhances motility under a subset of conditions with specific challenges.  相似文献   

19.
The stator-force generator that drives Na+-dependent motility in alkaliphilic Bacillus pseudofirmus OF4 is identified here as MotPS, MotAB-like proteins with genes that are downstream of the ccpA gene, which encodes a major regulator of carbon metabolism. B. pseudofirmus OF4 was only motile at pH values above 8. Disruption of motPS resulted in a non-motile phenotype, and motility was restored by transformation with a multicopy plasmid containing the motPS genes. Purified and reconstituted MotPS from B. pseudofirmus OF4 catalysed amiloride analogue-sensitive Na+ translocation. In contrast to B. pseudofirmus, Bacillus subtilis contains both MotAB and MotPS systems. The role of the motPS genes from B. subtilis in several motility-based behaviours was tested in isogenic strains with intact motAB and motPS loci, only one of the two mot systems or neither mot system. B. subtilis MotPS (BsMotPS) supported Na+-stimulated motility, chemotaxis on soft agar surfaces and biofilm formation, especially after selection of an up-motile variant. BsMotPS also supported motility in agar soft plugs immersed in liquid; motility was completely inhibited by an amiloride analogue. BsMotPS did not support surfactin-dependent swarming on higher concentration agar surfaces. These results indicate that BsMotPS contributes to biofilm formation and motility on soft agar, but not to swarming, in laboratory strains of B. subtilis in which MotAB is the dominant stator-force generator. BsMotPS could potentially be dominant for motility in B. subtilis variants that arise in particular niches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号