首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
For the surveillance of transmissible spongiform encephalopathies (TSEs) in animals and humans, the discrimination of different TSE strains causing scrapie, BSE, or Creutzfeldt-Jakob disease constitutes a substantial challenge. We addressed this problem by Fourier transform-infrared (FT-IR) spectroscopy of pathological prion protein PrP27-30. Different isolates of hamster-adapted scrapie (263K, 22A-H, and ME7-H) and BSE (BSE-H) were passaged in Syrian hamsters. Two of these agents, 22A-H and ME7-H, caused TSEs with indistinguishable clinical symptoms, neuropathological changes, and electrophoretic mobilities and glycosylation patterns of PrP27-30. However, FT-IR spectroscopy revealed that PrP27-30 of all four isolates featured different characteristics in the secondary structure, allowing a clear distinction between the passaged TSE agents. FT-IR analysis showed that phenotypic information is mirrored in beta-sheet and other secondary structure elements of PrP27-30, also in cases where immunobiochemical typing failed to detect structural differences. If the findings of this study hold true for nonexperimental TSEs in animals and humans, FT-IR characterization of PrP27-30 may provide a versatile tool for molecular strain typing without antibodies and without restrictions to specific TSEs or mammalian species.  相似文献   

3.
The risk of the transmission of ruminant transmissible spongiform encephalopathy (TSE) to humans was thought to be low due to the lack of association between sheep scrapie and the incidence of human TSE. However, a single TSE agent strain has been shown to cause both bovine spongiform encephalopathy (BSE) and human vCJD, indicating that some ruminant TSEs are transmissible to humans. While the transmission of cattle BSE to humans in transgenic mouse models has been inefficient, indicating the presence of a significant transmission barrier between cattle and humans, BSE has been transmitted to a number of other species. Here, we aimed to further investigate the human transmission barrier following the passage of BSE in a sheep. Following inoculation with cattle BSE, gene-targeted transgenic mice expressing human PrP showed no clinical or pathological signs of TSE disease. However, following inoculation with an isolate of BSE that had been passaged through a sheep, TSE-associated vacuolation and proteinase K-resistant PrP deposition were observed in mice homozygous for the codon 129-methionine PRNP gene. This observation may be due to higher titers of the BSE agent in sheep or an increased susceptibility of humans to BSE prions following passage through a sheep. However, these data confirm that, contrary to previous predictions, it is possible that a sheep prion is transmissible to humans and that BSE from other species is a public health risk.  相似文献   

4.
The conversion into abnormally folded prion protein (PrP) plays a key role in prion diseases. PrP(C) carries two N-linked glycan chains at amino acid residues 180 and 196 (mouse). Previous in vitro data indicated that the conversion process may not require glycosylation of PrP. However, it is conceivable that these glycans function as intermolecular binding sites during the de novo infection of cells on susceptible organisms and/or play a role for the interaction of both PrP isoforms. Such receptor-like properties could contribute to the formation of specific prion strains. However, in earlier studies, mutations at the glycosylation sites of PrP led to intracellular trafficking abnormalities, which made it impossible to generate PrP glycosylation-deficient mice that were susceptible to bovine spongiform encephalopathy (BSE) or scrapie. We have now tested more than 25 different mutations at both consensus sites and found one nonglycosylated (T182N/T198A) and two monoglycosylated (T182N and T198A) mutants that rather retained authentic cellular trafficking properties. In vitro all three mutants were converted into PrP(res). PrP mutant T182N/T198A also provoked a strong dominant-negative inhibition on the endogenous wild type PrP conversion reaction. By using the two monoglycosylated mutants, we generated transgenic mice overexpressing PrP(C) in their brains at levels of 2-4 times that of nontransgenic mice. Most interestingly, such mice proved readily susceptible to a challenge with either scrapie (Chandler and Me7) or with BSE. Incubation times were comparable or in some instances even significantly shorter than those of nontransgenic mice. These data indicate that diglycosylation of PrP(C) is not mandatory for prion infection in vivo.  相似文献   

5.
Molecular features of the proteinase K-resistant prion protein (PrP res) may discriminate among prion strains, and a specific signature could be found during infection by the infectious agent causing bovine spongiform encephalopathy (BSE). To investigate the molecular basis of BSE adaptation and selection, we established a model of coinfection of mice by both BSE and a sheep scrapie strain (C506M3). We now show that the PrP res features in these mice, characterized by glycoform ratios and electrophoretic mobilities, may be undistinguishable from those found in mice infected with scrapie only, including when mice were inoculated by both strains at the same time and by the same intracerebral inoculation route. Western blot analysis using different antibodies against sequences near the putative N-terminal end of PrP res also demonstrated differences in the main proteinase K cleavage sites between mice showing either the BSE or scrapie PrP res profile. These results, which may be linked to higher levels of PrP res associated with infection by scrapie, were similar following a challenge by a higher dose of the BSE agent during coinfection by both strains intracerebrally. Whereas PrP res extraction methods used allowed us to distinguish type 1 and type 2 PrP res, differing, like BSE and scrapie, by their electrophoretic mobilities, in the same brain region of some patients with Creutzfeldt-Jakob disease, analysis of in vitro mixtures of BSE and scrapie brain homogenates did not allow us to distinguish BSE and scrapie PrP res. These results suggest that the BSE agent, the origin of which remains unknown so far but which may have arisen from a sheep scrapie agent, may be hidden by a scrapie strain during attempts to identify it by molecular studies and following transmission of the disease in mice.  相似文献   

6.
Prions are largely contained within the nervous and lymphoid tissue of transmissible spongiform encephalopathy (TSE) infected animals. However, following advances in diagnostic sensitivity, PrP(Sc), a marker for prion disease, can now be located in a wide range of viscera and body fluids including muscle, saliva, blood, urine and milk, raising concerns that exposure to these materials could contribute to the spread of disease in humans and animals. Previously we demonstrated low levels of infectivity in the liver of sheep experimentally challenged with bovine spongiform encephalopathy. In this study we show that PrP(Sc) accumulated in the liver of 89% of sheep naturally infected with scrapie and 100% of sheep challenged with BSE, at both clinical and preclinical stages of the disease. PrP(Sc) was demonstrated in the absence of obvious inflammatory foci and was restricted to isolated resident cells, most likely Kupffer cells.  相似文献   

7.
The existence of different strains of infectious agents involved in scrapie, a transmissible spongiform encephalopathy (TSE) of sheep and goats, remains poorly explained. These strains can, however, be differentiated by characteristics of the disease in mice and also by the molecular features of the protease-resistant prion protein (PrP(res)) that accumulates into the infected tissues. For further analysis, we first transmitted the disease from brain samples of TSE-infected sheep to ovine transgenic [Tg(OvPrP4)] and to wild-type (C57BL/6) mice. We show that, as in sheep, molecular differences of PrP(res) detected by Western blotting can differentiate, in both ovine transgenic and wild-type mice, infection by the bovine spongiform encephalopathy (BSE) agent from most scrapie sources. Similarities of an experimental scrapie isolate (CH1641) with BSE were also likewise found following transmission in ovine transgenic mice. Secondly, we transmitted the disease to ovine transgenic mice by inoculation of brain samples of wild-type mice infected with different experimental scrapie strains (C506M3, 87V, 79A, and Chandler) or with BSE. Features of these strains in ovine transgenic mice were reminiscent of those previously described for wild-type mice, by both ratios and by molecular masses of the different PrP(res) glycoforms. Moreover, these studies revealed the diversity of scrapie strains and their differences with BSE according to labeling by a monoclonal antibody (P4). These data, in an experimental model expressing the prion protein of the host of natural scrapie, further suggest a genuine diversity of TSE infectious agents and emphasize its linkage to the molecular features of the abnormal prion protein.  相似文献   

8.
In May 2003, Canada became the 22nd country outside of the United Kingdom to report a case of bovine spongiform encephalopathy (BSE) in an animal not known to be imported from a country with cattle previously affected by this fatal, transmissible prion disease. Despite extensive testing of thousands of other animals that may have been exposed to contaminated feed at the same time as the affected animal, no evidence has been found for other infections. This finding leaves room for conjectures that the single confirmed case arose spontaneously, perhaps (by analogy with human Creutzfeldt-Jakob disease) as a result of a somatic protein misfolding event or a novel germline mutation. Here we present DNA sequence data from the affected animal's prion protein coding sequence that argue definitively against the latter hypothesis.  相似文献   

9.

Background  

After bovine spongiform encephalopathy (BSE) emerged in European cattle livestock in 1986 a fundamental question was whether the agent established also in the small ruminants' population. In Switzerland transmissible spongiform encephalopathies (TSEs) in small ruminants have been monitored since 1990. While in the most recent TSE cases a BSE infection could be excluded, for historical cases techniques to discriminate scrapie from BSE had not been available at the time of diagnosis and thus their status remained unclear. We herein applied state-of-the-art techniques to retrospectively classify these animals and to re-analyze the affected flocks for secondary cases. These results were the basis for models, simulating the course of TSEs over a period of 70 years. The aim was to come to a statistically based overall assessment of the TSE situation in the domestic small ruminant population in Switzerland.  相似文献   

10.
Since the appearance of bovine spongiform encephalopathy (BSE) in cattle and its linkage with the human variant of Creutzfeldt-Jakob disease, the possible spread of this agent to sheep flocks has been of concern as a potential new source of contamination. Molecular analysis of the protease cleavage of the abnormal prion protein (PrP), by Western blotting (PrP(res)) or by immunohistochemical methods (PrP(d)), has shown some potential to distinguish BSE and scrapie in sheep. Using a newly developed enzyme-linked immunosorbent assay, we identified 18 infected sheep in which PrP(res) showed an increased sensitivity to proteinase K digestion. When analyzed by Western blotting, two of them showed a low molecular mass of unglycosylated PrP(res) as found in BSE-infected sheep, in contrast to other naturally infected sheep. A decrease of the labeling by P4 monoclonal antibody, which recognizes an epitope close to the protease cleavage site, was also found by Western blotting in the former two samples, but this was less marked than in BSE-infected sheep. These two samples, and all of the other natural scrapie cases studied, were clearly distinguishable from those from sheep inoculated with the BSE agent from either French or British cattle by immunohistochemical analysis of PrP(d) labeling in the brain and lymphoid tissues. Final characterization of the strain involved in these samples will require analysis of the features of the disease following infection of mice, but our data already emphasize the need to use the different available methods to define the molecular properties of abnormal PrP and its possible similarities with the BSE agent.  相似文献   

11.
Prion protein and the transmissible spongiform encephalopathies   总被引:4,自引:0,他引:4  
Transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that occur in a wide variety of mammals. In humans, TSE diseases include kuru, sporadic and iatrogenic Creutzfeldt-Jakob disease (CJD), Gerstmann-Str?ussler-Scheinker syndrome (GSS), and fatal familial insomnia (FFI). So far, TSE diseases occur only rarely in humans; however, scrapie is a widespread problem in sheep, and the recent epidemic of bovine spongiform encephalopathy (BSE or mad cow disease) has seriously affected the British cattle industry. Of special concern is the recent appearance of a new variant of CJD in humans that is suspected of being caused by infections from BSE-infected cattle products. In all these diseases, an abnormal form of a host protein, prion protein (PrP), is essential for the pathogenic process. The relationship of this protein to the transmissible agent is currently the subject of great interest and controversy and is the subject of this review.  相似文献   

12.
13.
14.
A key feature of prion encephalopathies is the accumulation of a misfolded form of the host glycoprotein PrP. Cell-free and cell culture studies have shown that the efficiency of conversion of PrP into the disease-associated form is influenced by its amino acid sequence and also by its carbohydrate moiety. Here, we characterize four novel glycoform-dependent monoclonal antibodies raised against prokaryotic recombinant sheep PrP. We demonstrate that these antibodies discriminate the PrP monoglycosylated species, since two of them recognize molecules that have the first Asn glycosylation site occupied (mono1) while the other two recognize molecules glycosylated at the second site (mono2). Remarkably, the recognition of PrP by the anti-mono2 antibodies was strongly influenced by the amino acid present at position 171, i.e., either Gln or Arg. This polymorphism is known to be the main determinant of susceptibility and resistance to scrapie in sheep. Altogether, our findings lead us to propose that each glycan chain controls the accessibility of PrP determinants located close upstream from their attachment site. The monoglycoform-assigned and the allotype-restricted antibodies described here, the first to date, should provide further opportunities to investigate the involvement of each glycan chain in PrP conversion in relation to prion strain diversity and the basis of the resistance conferred by the Arg-171 amino acid.  相似文献   

15.
Mice devoid of PrP are resistant to scrapie and fail to replicate the agent. Introduction of transgenes expressing PrP into such mice restores susceptibility to scrapie. We find that truncated PrP devoid of the five copper binding octarepeats still sustains scrapie infection; however, incubation times are longer and prion titers and protease-resistant PrP are about 30-fold lower than in wild-type mice. Surprisingly, brains of terminally ill animals show no histopathology typical for scrapie. However, in the spinal cord, infectivity, gliosis, and motor neuron loss are as in scrapie-infected wild-type controls. Thus, while the region comprising the octarepeats is not essential for mediating pathogenesis and prion replication, it modulates the extent of these events and of disease presentation.  相似文献   

16.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.  相似文献   

17.
《朊病毒》2013,7(5):461-469
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

18.
Classical bovine spongiform encephalopathy is a transmissible prion disease that is fatal to cattle and is a human health risk due to its association with a strain of Creutzfeldt-Jakob disease (vCJD). Mutations to the coding region of the prion gene (PRNP) have been associated with susceptibility to transmissible spongiform encephalopathies in mammals including bovines and humans. Additional loci such as the retinoic acid receptor beta (RARB) and stathmin like 2 (STMN2) have also been associated with disease risk. The objective of this study was to refine previously identified regions associated with BSE susceptibility and to identify positional candidate genes and genetic variation that may be involved with the progression of classical BSE. The samples included 739 samples of either BSE infected animals (522 animals) or non-infected controls (207 animals). These were tested using a custom SNP array designed to narrow previously identified regions of importance in bovine genome. Thirty one single nucleotide polymorphisms were identified at p < 0.05 and a minor allele frequency greater than 5%. The chromosomal regions identified and the positional and functional candidate genes and regulatory elements identified within these regions warrant further research.  相似文献   

19.
It is desirable to make the diagnosis in live cattle with bovine spongiform encephalopathy (BSE), and thus surrogate markers for the disease have been eagerly sought. Serum proteins from BSE cattle were analyzed by 2‐D Western blotting and TOF‐MS. Autoantibodies against proteins in cytoskeletal fractions prepared from normal bovine brains were found in the sera of BSE cattle. The protein recognized was identified to be glial fibrillary acidic protein (GFAP), which is expressed mainly in astrocytes in the brain. The antigen protein, GFAP, was also found in the sera of BSE cattle. The percentages of both positive sera in the autoantibody and GFAP were 44.0% for the BSE cattle, 0% for the healthy cattle, and 5.0% for the clinically suspected BSE‐negative cattle. A significant relationship between the presence of GFAP and the expression of its autoantibody in the serum was recognized in the BSE cattle. These findings suggest a leakage of GFAP into the peripheral blood during neurodegeneration associated with BSE, accompanied by the autoantibody production, and might be useful in understanding the pathogenesis and in developing a serological diagnosis of BSE in live cattle.  相似文献   

20.
Thermostable proteases have been investigated for their ability to provide a novel biological solution to decontamination of prion agents responsible for transmissible spongiform encephalopathies (TSEs). Proteases were identified that digested total mouse brain homogenate (MBH) protein from uninfected mice. These proteases were then evaluated for digestion of BSE (301V) infectious MBH over a range of pH and temperatures, screened for loss of anti-prion antibody 6H4 immunoreactivity and protease-treated infectious MBH assessed in mouse bioassay using VM mice. Despite a number of proteases eliminating all 6H4-immunoreactive material, only the subtilisin-enzyme Properase showed a significant extension in incubation period in mouse bioassays following a 30-min incubation at 60 degrees C and pH 12. These results demonstrate the potential of the method to provide a practical solution to the problems of TSE contamination of surgical instruments and highlight the inadequacy of using Western blot for assessment of decontamination/inactivation of TSE agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号