首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundNeutrophils are involved in the initial host responses to pathogens. Neutrophils can activate T cell responses either independently or through indirect involvement of Dendritic cells (DCs). Recently we have demonstrated direct neutrophil-T cell interactions that initiate adaptive immune responses following immunization with live attenuated Leishmania donovani centrin deleted parasite vaccine (LdCen-/-). However, neutrophil-DC interactions in T cell priming in vaccine immunity in general are not known. In this study we evaluated the interaction between neutrophils and DCs during LdCen-/- infection and compared with wild type parasite (LdWT) both in vitro and in vivo.Methodology/findingsLdCen-/- parasite induced increased expression of CCL3 in neutrophils caused higher recruitment of DCs capable of inducing a strong proinflammatory response and elevated co-stimulatory molecule expression compared to LdWT infection. To further illustrate neutrophil-DCs interactions in vivo, we infected LYS-eGFP mice with red fluorescent LdWT/LdCen-/- parasites and sort selected DCs that engulfed the neutrophil containing parasites or DCs that acquired the parasites directly in the ear draining lymph nodes (dLN) 5d post infection. The DCs predominantly acquired the parasites by phagocytosing infected neutrophils. Specifically, DCs containing LdCen-/- parasitized neutrophils exhibited a proinflammatory phenotype, increased expression of costimulatory molecules and initiated higher CD4+T cell priming ex-vivo. Notably, potent DC activation occurred when LdCen-/- parasites were acquired indirectly via engulfment of parasitized neutrophils compared to direct engulfment of LdCen-/- parasites by DCs. Neutrophil depletion in LdCen-/- infected mice significantly abrogated expression of CCL3 resulting in decreased DC recruitment in ear dLN. This event led to poor CD4+Th1 cell priming ex vivo that correlated with attenuated Tbet expression in ear dLN derived CD4+ T cells in vivo.ConclusionsCollectively, LdCen-/- containing neutrophils phagocytized by DC markedly influence the phenotype and antigen presenting capacity of DCs early on and thus play an immune-regulatory role in shaping vaccine induced host protective response.  相似文献   

2.
During acute bacterial infections such as meningitis, neutrophils enter the tissue where they combat the infection before they undergo apoptosis and are taken up by macrophages. Neutrophils show pro-inflammatory activity and may contribute to tissue damage. In pneumococcal meningitis, neuronal damage despite adequate chemotherapy is a frequent clinical finding. This damage may be due to excessive neutrophil activity. We here show that transgenic expression of Bcl-2 in haematopoietic cells blocks the resolution of inflammation following antibiotic therapy in a mouse model of pneumococcal meningitis. The persistence of neutrophil brain infiltrates was accompanied by high levels of IL-1β and G-CSF as well as reduced levels of anti-inflammatory TGF-β. Significantly, Bcl-2-transgenic mice developed more severe disease that was dependent on neutrophils, characterized by pronounced vasogenic edema, vasculitis, brain haemorrhages and higher clinical scores. In vitro analysis of neutrophils demonstrated that apoptosis inhibition completely preserves neutrophil effector function and prevents internalization by macrophages. The inhibitor of cyclin-dependent kinases, roscovitine induced apoptosis in neutrophils in vitro and in vivo. In wild type mice treated with antibiotics, roscovitine significantly improved the resolution of the inflammation after pneumococcal infection and accelerated recovery. These results indicate that apoptosis is essential to turn off activated neutrophils and show that inflammatory activity and disease severity in a pyogenic infection can be modulated by targeting the apoptotic pathway in neutrophils.  相似文献   

3.
Neutrophils migrate to sites of tissue damage, where they protect the host against pathogens. Often, the cost of these neutrophil defenses is collateral damage to healthy tissues. Thus, the immune system has evolved multiple mechanisms to regulate neutrophil migration. One of these mechanisms is reverse migration — the process whereby neutrophils leave the source of inflammation. In vivo, neutrophils arrive and depart the wound simultaneously — indicating that neutrophils dynamically integrate conflicting signals to engage in forward and reverse migration. This finding is seemingly at odds with the established chemoattractant hierarchy in vitro, which places wound-derived signals at the top. Here we will discuss recent work that has uncovered key players involved in retaining and dispersing neutrophils from wounds. These findings offer the opportunity to integrate established and emerging mechanisms into a holistic model for neutrophil migration in vivo.  相似文献   

4.
BackgroundNeutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate.ConclusionsWe show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.  相似文献   

5.
Neutrophils form the first line of host defense against bacterial pathogens. They are rapidly mobilized to sites of infection where they help marshal host defenses and remove bacteria by phagocytosis. While splenic neutrophils promote marginal zone B cell antibody production in response to administered T cell independent antigens, whether neutrophils shape humoral immunity in other lymphoid organs is controversial. Here we investigate the neutrophil influx following the local injection of Staphylococcus aureus adjacent to the inguinal lymph node and determine neutrophil impact on the lymph node humoral response. Using intravital microscopy we show that local immunization or infection recruits neutrophils from the blood to lymph nodes in waves. The second wave occurs temporally with neutrophils mobilized from the bone marrow. Within lymph nodes neutrophils infiltrate the medulla and interfollicular areas, but avoid crossing follicle borders. In vivo neutrophils form transient and long-lived interactions with B cells and plasma cells, and their depletion augments production of antigen-specific IgG and IgM in the lymph node. In vitro activated neutrophils establish synapse- and nanotube-like interactions with B cells and reduce B cell IgM production in a TGF- β1 dependent manner. Our data reveal that neutrophils mobilized from the bone marrow in response to a local bacterial challenge dampen the early humoral response in the lymph node.  相似文献   

6.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.  相似文献   

7.
Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3−/− mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3−/− progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3−/− cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3−/− cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation and survival thus underlies neutropenia in G6PC3−/− deficiency, both originating from a reduced ability to utilize glucose. Hoxb8-dependent cells are a model to study differentiation and survival of the neutrophil lineage.  相似文献   

8.
Neutrophils and dendritic cells (DCs) converge at localized sites of acute inflammation in the skin following pathogen deposition by the bites of arthropod vectors or by needle injection. Prior studies in mice have shown that neutrophils are the predominant recruited and infected cells during the earliest stage of Leishmania major infection in the skin, and that neutrophil depletion promotes host resistance to sand fly transmitted infection. How the massive influx of neutrophils aimed at wound repair and sterilization might modulate the function of DCs in the skin has not been previously addressed. The infected neutrophils recovered from the skin expressed elevated apoptotic markers compared to uninfected neutrophils, and were preferentially captured by dermal DCs when injected back into the mouse ear dermis. Following challenge with L. major directly, the majority of the infected DCs recovered from the skin at 24 hr stained positive for neutrophil markers, indicating that they acquired their parasites via uptake of infected neutrophils. When infected, dermal DCs were recovered from neutrophil depleted mice, their expression of activation markers was markedly enhanced, as was their capacity to present Leishmania antigens ex vivo. Neutrophil depletion also enhanced the priming of L. major specific CD4+ T cells in vivo. The findings suggest that following their rapid uptake by neutrophils in the skin, L. major exploits the immunosuppressive effects associated with the apoptotic cell clearance function of DCs to inhibit the development of acquired resistance until the acute neutrophilic response is resolved.  相似文献   

9.
Cell migration is fundamental to the inflammatory response, but uncontrolled cell migration and excess recruitment of neutrophils and other leukocytes can cause damage to the tissue. Here we describe the use of an in vivo model – the Tg(mpx:GFP)i114 zebrafish line, in which neutrophils are labelled by green fluorescent protein (GFP) – to screen a natural product library for compounds that can affect neutrophil migratory behaviour. Among 1040 fungal extracts screened, two were found to inhibit neutrophil migration completely. Subfractionation of these extracts identified sterigmatocystin and antibiotic PF1052 as the active components. Using the EZ-TAXIScan chemotaxis assay, both compounds were also found to have a dosage-dependent inhibitory effect on murine neutrophil migration. Furthermore, neutrophils treated with PF1052 failed to form pseudopods and appeared round in shape, suggesting a defect in PI3-kinase (PI3K) signalling. We generated a transgenic neutrophil-specific PtdIns(3,4,5)P3 (PIP3) reporter zebrafish line, which revealed that PF1052 does not affect the activation of PI3K at the plasma membrane. In human neutrophils, PF1052 neither induced apoptosis nor blocked AKT phosphorylation. In conclusion, we have identified an antibiotic from a natural product library with potent anti-inflammatory properties, and have established the utility of the mpx:GFP transgenic zebrafish for high-throughput in vivo screens for novel inhibitors of neutrophil migration.KEY WORDS: Neutrophil, Recruitment, Migration, Drug screen, Zebrafish  相似文献   

10.
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.  相似文献   

11.
BackgroundOsteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear.PurposeWe explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo.MethodsThe in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model.ResultsWe found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2–10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression.ConclusionsKir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.  相似文献   

12.
BackgroundBlue light can directly penetrate the lens and reach the retina to induce retinal damage, causing dry age-related macular degeneration (dAMD). Cynaroside (Cyn), a flavonoid glycoside, was proved to alleviate the oxidative damage of retinal cells in vitro. However, whether or not Cyn also exerts protective effect on blue light-induced retinal degeneration and its mechanisms of action are unclear.PurposeThis study aims to evaluate the protective effects of Cyn against blue-light induced retinal degeneration and its underlying mechanisms in vitro and in vivo.Study design/methodsBlue light-induced N-retinylidene-N-retinylethanolamine (A2E)-laden adult retinal pigment epithelial-19 (ARPE-19) cell damage and retinal damage in SD rats were respectively used to evaluate the protective effects of Cyn on retinal degeneration in vitro and in vivo. MTT assay and AnnexinV-PI double staining assay were used to evaluate the in vitro efficacy. Histological analysis, TUNEL assay, and fundus imaging were conducted to evaluate the in vivo efficacy. ELISA assay, western blot, and immunostaining were performed to investigate the mechanisms of action of Cyn.ResultsCyn decreased the blue light-induced A2E-laden ARPE-19 cell damage and oxidative stress. Intravitreal injection of Cyn (2, 4 μg/eye) reversed the retinal degeneration induced by blue light in SD rats. Furthermore, Cyn inhibited the nuclear translocation of NF-κB and induced autophagy, which led to the clearance of overactivated pyrin domain containing 3 (NLRP3) inflammasome in vitro and in vivo.ConclusionCyn protects against blue light-induced retinal degeneration by modulating autophagy and decreasing the NLRP3 inflammasome.  相似文献   

13.
BackgroundUlcerative colitis (UC) is a chronic inflammatory bowel disease with high morbidity, which leads to poor quality of life. The Xianglian pill (XLP) is a classical Chinese patent medicine and has been clinically proven to be an effective treatment for UC.PurposeThe pharmacological mechanism of the key bioactive ingredients of XLP for the treatment of UC was investigated by a network pharmacology and pharmacokinetics integrated strategy.Study design and methodsNetwork pharmacology was used to analyze the treatment effect of nine quantified XLP ingredients on UC. Key pathways were enriched and analyzed by protein-protein interaction and Kyoto Encyclopedia of Genes and Genomes analyses. The effect of XLP on Th17 cell differentiation was validated using a mouse model of UC. The binding of nine compounds with JAk2, STAT3, HIF-1α, and HSP90AB1 was assessed using molecular docking. A simple and reliable ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous quantification of nine ingredients from XLP in plasma and applied to a pharmacokinetic study following oral administration.ResultsNine compounds of XLP, including coptisine, berberine, magnoflorine,berberrubine, jatrorrhizine, palmatine, evodiamine, rutaecarpine, and dehydrocostus lactone, were detected. Network pharmacology revealed 50 crossover genes between the nine compoundsand UC. XLP treats UC mainly by regulating key pathways of the immune system, including Th17 cell differentiation, Jak-Stat, and PI3K-Akt signaling pathways. An in vivo validation in mice found that XLP inhibits Th17 cell differentiation by suppressing the Jak2-Stat3 pathway, which alleviates mucosal inflammation in UC. Molecular docking confirmed that eight compounds are capable of binding with JAk2, HIF-1α, and HSP90AB1, further confirming the inhibitory effect of XLP on the Jak2-Stat3 pathway. Moreover, apharmacokinetic study revealed that the nine ingredients of XLP are exposed in the plasma and colon tissue, which demonstrates its pharmacological effect on UC.ConclusionThis study evaluates the clinical treatment efficacy of XLP for UC. The network pharmacology and pharmacokinetics integrated strategy evaluation paradigm is efficient in discovering the key pharmacological mechanism of herbal formulae.  相似文献   

14.
BackgroundPosttranslational modification of chemokines is one of the mechanisms that regulate leukocyte migration during inflammation. Multiple natural NH2-terminally truncated forms of the major human neutrophil attractant interleukin-8 or CXCL8 have been identified. Although differential activity was reported for some CXCL8 forms, no biological data are available for others.ConclusionsIn terms of their ability to induce neutrophil recruitment in vivo, the multiple CXCL8 forms may be divided in three groups. The first group includes CXCL8 proteins consisting of 75 to 79 amino acids, cleaved by aminopeptidases, with intermediate activity on neutrophils. The second group, generated through proteolytic cleavage (e.g. by Ser proteases), contains 69 to 72 amino acid forms which are highly potent neutrophil attractants in vivo. A third category is generated through the modification of the arginine in the NH2-terminal region into citrulline by peptidylarginine deiminases and has weak potency to induce neutrophil extravasation.  相似文献   

15.
Ro60/SSA is a vital auto antigen that is targeted in Sjogren's syndrome and systemic lupus erythematosus (SLE). However, its role in solid cancers has rarely been reported. The present study investigated the expression and function of Ro60/SSA in the development of pancreatic ductal adenocarcinoma (PDAC) both in vitro and in vivo. Immunohistochemistry was used to examine the expression of Ro60/SSA in PDAC and normal pancreatic tissues by using tissue microarray chips. The results showed that Ro60/SSA expression was increased in PDAC tissues compared with normal pancreatic tissues. Knockdown of Ro60/SSA by siRNA transfection significantly decreased cell proliferation and invasion in vitro. Furthermore, knockdown of Ro60/SSA inhibited the growth of subcutaneous tumors in vivo. Taken together, the current study provides evidence of new function of Ro60/SSA in the development of cancer. It facilitates pancreatic cancer proliferation, migration and invasion. Therefore, it may represent a novel molecular target for the management of pancreatic cancer.  相似文献   

16.
Chronic graft-versus-host disease (cGVHD) is a common side effect of allogeneic stem cell transplantation and a major cause of morbidity and mortality in affected patients. Especially skin, eyes and oral mucosa are affected. This can lead to pain and functional impairment. Extracorporeal photopheresis (ECP) is an effective immunomodulatory therapy with minimal side effects but its mode of action is still largely unknown. The objective of the present study was to examine the effects of ECP on neutrophil granulocytes in patients with cGVHD. Analysis of leukocytes from cGVHD patients obtained from the ECP device during treatment showed that neutrophil granulocytes account for the majority of cells treated during ECP. Neutrophils from healthy donors treated in vitro with 8-methoxypsoralen and UVA light as well as neutrophils from buffy coats of patients with cGVHD treated by ECP showed increased apoptosis and decreased half-life. In remaining non-apoptotic cells chemoirradiation resulted in loss of activation markers and reduced effector functions. This was accompanied by an increase in extracellular arginase-1 activity. Additional comparison of neutrophils isolated from blood of cGVHD patients before and 24h after ECP revealed a decreased half-life and reduction of effector functions of post-ECP neutrophils ex vivo. These observations strongly suggest that ECP induces both apoptosis and physiological changes in neutrophils and that these changes also take place in vivo. This study is the first to show that ECP modulates apoptosis and inflammatory activity in neutrophil granulocytes, indicating that neutrophils may significantly contribute to the overall immunomodulatory effects attributed to this treatment.  相似文献   

17.
The ability of Ostertagia ostertagi L3 larva to attract bovine leukocytes was investigated. Soluble L3 extracts (SLE) were tested for both eosinophil and neutrophil chemotactic activities both in vitro and in vivo. Results indicated that SLE was chemotactic for eosinophils in vitro. No neutrophil chemotactic activity was demonstrated in the SLE, although SLE enhanced random migration of neutrophils. Intradermal injection of 100 μg SLE into normal (non-infected) calves induced a marked focal increase in eosinophil accumulations at 4 and 48 h. Neutrophil accumulation at the injection sites did not occur. These results indicated that O. ostertagi L3 larva may play an important role in the accumulation of eosinophils at the site of parasitized abomasal glands.  相似文献   

18.
CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation.

Results

CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66+MPO+ cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils.  相似文献   

19.
An inability of neutrophils to eliminate invading microorganisms is frequently associated with severe infection and may contribute to the high mortality rates associated with sepsis. In the present studies, we examined whether metformin and other 5′ adenosine monophosphate-activated protein kinase (AMPK) activators affect neutrophil motility, phagocytosis and bacterial killing. We found that activation of AMPK enhanced neutrophil chemotaxis in vitro and in vivo, and also counteracted the inhibition of chemotaxis induced by exposure of neutrophils to lipopolysaccharide (LPS). In contrast, small interfering RNA (siRNA)-mediated knockdown of AMPKα1 or blockade of AMPK activation through treatment of neutrophils with the AMPK inhibitor compound C diminished neutrophil chemotaxis. In addition to their effects on chemotaxis, treatment of neutrophils with metformin or aminoimidazole carboxamide ribonucleotide (AICAR) improved phagocytosis and bacterial killing, including more efficient eradication of bacteria in a mouse model of peritonitis-induced sepsis. Immunocytochemistry showed that, in contrast to LPS, metformin or AICAR induced robust actin polymerization and distinct formation of neutrophil leading edges. Although LPS diminished AMPK phosphorylation, metformin or AICAR was able to partially decrease the effects of LPS/toll-like receptor 4 (TLR4) engagement on downstream signaling events, particularly LPS-induced IκBα degradation. The IκB kinase (IKK) inhibitor PS-1145 diminished IκBα degradation and also prevented LPS-induced inhibition of chemotaxis. These results suggest that AMPK activation with clinically approved agents, such as metformin, may facilitate bacterial eradication in sepsis and other inflammatory conditions associated with inhibition of neutrophil activation and chemotaxis.  相似文献   

20.
Background aimsDespite the availability of modern antibiotics/antimycotics and cytokine support, neutropenic infection accounts for the majority of chemotherapy-associated deaths. While transfusion support with donor neutrophils is possible, cost and complicated logistics make such an option unrealistic on a routine basis. A manufactured neutrophil product could enable routine prophylactic administration of neutrophils, preventing the onset of neutropenia and substantially reducing the risk of infection. We examined the use of pre-culture strategies and various cytokine/modulator combinations to improve neutrophil expansion from umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HPC).MethodsEnriched UCB HPC were cultured using either two-phase pre-culture strategies or a single phase using various cytokine/modulator combinations. Outcome was assessed with respect to numerical expansion, cell morphology, granulation and respiratory burst activity.ResultsPre-culture in the absence of strong differentiation signals (e.g. granulocyte colony-stimulating factor; G-CSF) failed to provide any improvement to final neutrophil yields. Similarly, removal of differentiating cells during pre-culture failed to improve neutrophil yields to an appreciable extent. Of the cytokine/modulator combinations, the addition of granulocyte–macrophage (GM)-colony-stimulating factor (CSF) alone gave the greatest increase. In order to avoid production of monocytes, it was necessary to remove GM-CSF on day 5. Using this strategy, neutrophil expansion improved 2.7-fold.ConclusionsAlthough all cytokines and culture strategies employed have been reported previously to enhance HPC expansion, we found that the addition of GM-CSF alone was sufficient to improve total cell yields maximally. The need to remove GM-CSF on day 5 to avoid monocyte differentiation highlights the context and time-dependent complexity of exogenous signaling in hematopoietic cell differentiation and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号