首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Epilepsy is a neurological disorder affecting more than 50 million people worldwide. It can be controlled by antiepileptic drugs (AEDs) but more than 30% patients are still resistant to AEDs. To overcome this problem, researchers are trying to develop novel approaches to treat epilepsy including the use of herbal medicines. The γ-amino butyric acid type-A receptor associated protein (GABARAP) is ubiquitin-like modifier implicated in the intracellular trafficking of GABAAR. An in silico mutation was created at 116 amino acid position G116A, and an in silico study was carried out to identify the potential binding inhibitors (with antiepileptic properties) against the active sites of GABARAP. Five different plant derived compounds namely (a) Aconitine (b) Berberine (c) Montanine (d) Raubasine (e) Safranal were selected, and their quantitative structure-activity relationships (QSAR) have been conducted to search the inhibitory activity of the selected compounds. The results have shown maximum number of hydrogen bond (H-bond) interactions of Raubasine with highest interaction energy among all of the five compounds. So, Raubasine could be the best fit ligand of GABARAP but in vitro, and in vivo studies are necessary for further confirmation.  相似文献   

2.
Bang sensitive (BS) Drosophila mutants display characteristic seizure-like phenotypes resembling, in some aspects, those of human seizure disorders such as epilepsy. The BS mutant parabss1, caused by a gain-of-function mutation of the voltage-gated Na+ channel gene, is extremely seizure-sensitive with phenotypes that have proven difficult to ameliorate by anti-epileptic drug feeding or by seizure-suppressor mutation. It has been presented as a model for intractable human epilepsy. Here we show that cacophony (cacTS2), a mutation of the Drosophila presynaptic Ca++ channel α1 subunit gene, is a particularly potent seizure-suppressor mutation, reverting seizure-like phenotypes for parabss1 and other BS mutants. Seizure-like phenotypes for parabss1 may be suppressed by as much as 90% in double mutant combinations with cacTS2. Unexpectedly, we find that parabss1 also reciprocally suppresses cacTS2 seizure-like phenotypes. The cacTS2 mutant displays these seizure-like behaviors and spontaneous high-frequency action potential firing transiently after exposure to high temperature. We find that this seizure-like behavior in cacTS2 is ameliorated by 85% in double mutant combinations with parabss1.  相似文献   

3.
Video tracking systems have been used widely to analyze Drosophila melanogaster movement and detect various abnormalities in locomotive behavior. While these systems can provide a wealth of behavioral information, the cost and complexity of these systems can be prohibitive for many labs. We have developed a low-cost assay for measuring locomotive behavior and seizure movement in D. melanogaster. The system uses a web-cam to capture images that can be processed using a combination of inexpensive and free software to track the distance moved, the average velocity of movement and the duration of movement during a specified time-span. To demonstrate the utility of this system, we examined a group of D. melanogaster mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies. Using this novel system, we were able to detect that the BS mutant bang senseless (bss) exhibits lower levels of exploratory locomotion in a novel environment than wild type flies. In addition, the system was used to identify that the drug metformin, which is commonly used to treat type II diabetes, reduces the intensity of SLA in the BS mutants.  相似文献   

4.
Over-expression of efflux transporter P-glycoprotein (PgP) encoded by ABCB1 gene has been implicated in poor responsive epilepsy. Several genetic variants have been shown to influence the expression levels of P-glycoprotein. The aim of the present study was to investigate the role of ABCB1 polymorphisms: C1236T, G2677T/A and C3435T in determining drug response to first line antiepileptic drugs (AEDs) namely phenobarbitone, phenytoin, carbamazepine and valproate in North Indian cohort of epilepsy patients. DNA samples were obtained from 392 consecutive epilepsy patients, out of which 228 had completed follow-up evaluation at 12 months. After attaining steady state of the AEDs in the first two months of study, 133 patients showed complete freedom from seizures (no-seizure group) and 95 patients continued to have seizures (recurrent-seizures group) in the remaining period of study. Comparison of “no-seizure” and “recurrent-seizures” groups revealed no significant differences in allelic, genotypic and haplotypic frequencies for all the studied variants. In conclusion, our finding disproves a general association between ABCB1 polymorphisms and drug response in epilepsy patients.  相似文献   

5.
Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100+ years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6–9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED50?=?13 mg/kg and ED50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.  相似文献   

6.
Brain organoids with three-dimensional structure and tissue-like function are highly demanded for brain disease research and drug evaluation. However, to our knowledge, methods for measuring and analyzing brain organoid function have not been developed yet. This study focused on the frequency components of an obtained waveform below 500 Hz using planner microelectrode array (MEA) and evaluated the response to the convulsants pentylenetetrazol (PTZ) and strychnine as well as the antiepileptic drugs (AEDs) perampanel and phenytoin. Sudden and persistent seizure-like firing was observed with PTZ administration, displaying a concentration-dependent periodic activity with the frequency component enhanced even in one oscillation characteristic. On the other hand, in the administration of AEDs, the frequency of oscillation decreased in a concentration-dependent manner and the intensity of the frequency component in one oscillation also decreased. Interestingly, at low doses of phenytoin, a group of synchronized bursts was formed, which was different from the response to the perampanel. Frequency components contained information on cerebral organoid function, and MEA was proven useful in predicting the seizure liability of drugs and evaluating the effect of AEDs with a different mechanism of action. In addition, frequency component analysis of brain organoids using MEA is an important analysis method to perform in vitro to in vivo extrapolation in the future, which will help explore the function of the organoid itself, study human brain developments, and treat various brain diseases.  相似文献   

7.
Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel’s fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.  相似文献   

8.
We studied the effects of three antiepileptic drugs (AEDs) in a cell-free model system containing isolated synaptic vesicles (SVs) and cytosolic proteins, which allowed us to reproduce one of the stages of complex exocytosis. Ethosuximide, sodium valproate, and gabapentin intensified calcium- and Mg2+-ATP-induced fusion of SVs; the effect was indicative of the ability of these agents to influence the processes of simple and/or complex exocytosis in synaptic connections in the CNS structures. Antiepileptic drugs did not change the intensity of calcium-dependent fusion of liposomes and SVs treated by proteases. Therefore, the effect of AEDs can be realized via their interaction with proteins of SVs. After decrease in the level of cholesterol in the membranes of SVs using treatment by methyl-β- cyclodextrin, the ability of AEDs to activate fusion of SVs remained unchanged. Therefore, the studied AEDs act via proteins localized beyond the borders of cholesterol-enriched microdomains of the membrane. Drugs that induce convulsions (corazole and picrotoxin) did not change the characteristics of fusion of SVs under the in vitro action of AEDs. This is indicative of the absence of molecular targets for the above chemoconvulsants in the SV membranes, as compared with those in the plasma membranes of nerve terminals. According to our experiments, just proteins of SVs are functional targets for ethosuximide, sodium valproate, and gabapentin providing their anticonvulsant actions. The proposed model, which allows one to reproduce the membrane fusion, can be successfully used for the testing of drugs influencing a presynaptic link of synaptic contacts in the CNS.  相似文献   

9.
Epilepsy, a functional disturbance of the CNS and induced by abnormal electrical discharges, manifests by recurrent seizures. Although new antiepileptic drugs have been developed during recent years, still more than one third of patients with epilepsy are refractory to treatment. Therefore, the search for new mechanisms that can regulate cellular excitability are of utmost importance. Three currently available drugs are of special interest because they have novel mechanisms of action and are especially effective for partial onset seizures. Vigabatrin is a selective and irreversible GABA-transaminase inhibitor that greatly increases whole-brain levels of GABA. Tiagabine is a potent inhibitor of GABA uptake into neurons and glial cells. Topiramate is considered to produce its antiepileptic effect through several mechanisms, including modification of Na+ -and/or Ca2+-dependent action potentials, enhancement of GABA-mediated Cl fluxes into neurons, and inhibition of kainate-mediated conductance at glutamate receptors of the AMPA/kainate type. This review will discuss these mechanisms of action at the cellular and molecular levels.  相似文献   

10.
Epilepsy is one of the most important neurological diseases. It concerns about 1% of the population worldwide. Despite the discovery of new molecules, one third of epileptic patients are resistant to anti-epileptic drugs and among them only a few can benefit from resective surgery. In this context, radiotherapy is an interesting alternative to the other treatments and several clinical devices exist (e.g., Gamma Knife®). The European Synchrotron Radiation Facility offers the possibility to develop new methods of radiosurgery and to study their antiepileptic effects. Here, we discuss several studies that we performed recently to test and try to understand the antiepileptic effects of X-ray synchrotron microbeams in different animal models of epilepsy. We showed a decrease of seizures after Interlaced Microbeam Radiotherapy (IntMRT) of the somatosensory cortex, known as the seizure generator, in a genetic model of absence epilepsy. These antiepileptic effects were stable over 4 months and with low tissular and functional side-effects. The irradiated pyramidal neurons still displayed their physiological activity but did not synchronize anymore. We also obtained a lasting suppression of seizures after IntMRT of the dorsal hippocampus in a mouse model of mesiotemporal lobe epilepsy. However, an important variability of antiepileptic efficiency was observed probably due to the small size of the targeted structure. Despite these encouraging proofs-of-concepts, there is now a need to adapt IntMRT to other models of epilepsy in rodents which are close to refractory forms of epilepsy in human patients and to implement this approach to non-human primates, before moving to clinical trials.  相似文献   

11.
Purinergic P2X3 receptors (P2X3Rs) play extensive roles in nerve cells in the central nervous system, particularly in hyperexcitability and calcium (Ca2+) influx. However, the role of P2X3Rs in epilepsy has not been previously investigated. To determine the relationship between P2X3Rs and epilepsy, the expression and cellular location of P2X3Rs in patients with intractable temporal lobe epilepsy (TLE) and in a lithium chloride-pilocarpine-induced chronic rat model of epilepsy were assessed. Furthermore, the function of P2X3Rs was assessed in vitro. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were used to evaluate the expression levels of P2X3Rs in brain tissues from TLE patients and an epileptic rat model, whereas immunofluorescence labeling was applied to determine the distribution of target proteins. Whole-cell recording was subsequently performed to identify the influence of P2X3Rs on seizure-like discharges. P2X3Rs were located at the cell bodies and dendrites of neurons with significantly increased expression in the TLE patients and epileptic rat model. In vitro, P2X3R activation accelerated sustained repetitive firing, whereas P2X3R inhibition led to relatively low-frequency discharges. To the best of our knowledge, this is the first study provide evidence that upregulated P2X3R expression exists in both epileptic humans and rats and may aggravate the epileptic state in vitro. Thus, P2X3Rs may represent a novel therapeutic target for antiepileptic drugs.  相似文献   

12.
Research in the epilepsy field is moving from a primary focus on controlling seizures to addressing disease pathophysiology. This requires the adoption of resource- and time-consuming animal models of chronic epilepsy which are no longer able to sustain the testing of even moderate numbers of compounds. Therefore, new in vitro functional assays of epilepsy are needed that are able to provide a medium throughput while still preserving sufficient biological context to allow for the identification of compounds with new modes of action. Here we describe a robust and simple fluorescence-based calcium assay to measure epileptiform network activity using rat primary cortical cultures in a 96-well format. The assay measures synchronized intracellular calcium oscillations occurring in the population of primary neurons and is amenable to medium throughput screening. We have adapted this assay format to the low magnesium and the 4-aminopyridine epilepsy models and confirmed the contribution of voltage-gated ion channels and AMPA, NMDA and GABA receptors to epileptiform activity in both models. We have also evaluated its translatability using a panel of antiepileptic drugs with a variety of modes of action. Given its throughput and translatability, the calcium oscillations assay bridges the gap between simplified target-based screenings and compound testing in animal models of epilepsy. This phenotypic assay also has the potential to be used directly as a functional screen to help identify novel antiepileptic compounds with new modes of action, as well as pathways with previously unknown contribution to disease pathophysiology.  相似文献   

13.
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure–sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shits1 mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.  相似文献   

14.
During the last decade the process of introducing the new generation of antiepileptic drugs (AEDs) has substantially changed the ways of treating epilepsy. Although a great deal of information about the role of new drugs has been accumulated, much less attention was paid to the impact of the new generation of AEDs on the utilization of classical AEDs. In order to detect the relation between the new and classical AEDs, the data about drug consumption in Croatia in the period 2000-2002 were analyzed. The main results indicated that the growth utilization rate (15%) was more the result of increasing consumption of the classical antiepileptic substances (in almost 2/3). It has been discussed that one of the possible interpretations for this phenomenon could lie in the fact that the continuing process of introducing the new AEDs was accompanied by a great number of educational activities. These activities have led to greater awareness of the facilities in treating epilepsy and consequently to a more active therapeutic approach, which encompassed both generations of drugs, even more the older one.  相似文献   

15.
癫痫是一种常见的神经系统慢性疾病,多数患者妊娠期需继续应用抗癫痫药物(AEDs)治疗,以控制癫痫发作。但妊娠期妇女体 内一系列生理变化可改变 AEDs 的药代动力学行为,导致癫痫发作并危及胎儿的生长发育。基于此,综述妊娠期 AEDs 的药代动力学变化 及胎盘转运特征,为妊娠期癫痫患者的精准合理用药提供参考。  相似文献   

16.
KCNQ (Kv7) has emerged as a validated target for the development of novel anti-epileptic drugs. In this paper, a series of novel N-phenylbutanamide derivatives were designed, synthesized and evaluated as KCNQ openers for the treatment of epilepsy. These compounds were evaluated for their KCNQ opening activity in vitro and in vivo. Several compounds were found to be potent KCNQ openers. Compound 1 with favorable in vitro activity was submitted to evaluation in vivo. Results showed that compound 1 owned significant anti-convulsant activity with no adverse effects. It was also found to posses favorable pharmacokinetic profiles in rat. This research may provide novel potent compounds for the discovery of KCNQ openers in treating epilepsy.  相似文献   

17.
Bang-sensitive mutants of Drosophila melano gaster (bas 1, bssMW1, eas2, tko25t) display seizure followed by paralysis when subjected to mechanical shock. However, no physiological or biochemical defect has been found to be common to all of these mutants. In order to observe the effects of bang-sensitive mutations upon an identified neuron, and to study the nature of mechanically induced paralysis, we examined the response of a mechanosensory neuron in these mutants. In each single mutant and the double mutant bas 1 bssMW1, the frequency of action potentials in response to a bristle displacement was reduced. This is the first demonstration of a physiological defect common to several of the bang-sensitive mutations. Adaptation of spike frequency, cumulative adaptation to repeated stimulation (fatigue) and the time course of recovery from adaptation were also examined. Recovery from adaptation to a conditioning stimulus was examined in two mutants (bas 1 and bss MW1), and initial recovery from adaptation was greater in both mutants. Quantification of receptor potentials was complicated by variability inherent in extracellular recording conditions, but examination of the waveform and range of amplitudes did not indicate clear mutant defects. Therefore the differences observed in the spike response may be due to an alteration of the transfer from receptor potentials to action potential production. DNA sequence analysis of tko and eas has indicated that they encode apparently unrelated biochemical products. Our results suggest that these biochemical lesions lead to a common physiological defect in mechanoreceptors. Although this defect does not provide a straightforward explanation for bang sensitivity, the altered cellular process may lead to bang sensitivity through its action in different parts of the nervous system.Abbreviations APA anterior post-alar - ANP anterior notopleural - bas bang-sensitive - bss bang-senseless - eas easily-shocked tko technical knockout  相似文献   

18.
Carbamazepine (CBZ) has been extensively used in the treatment of epilepsy, as well as in the treatment of neuropathic pain and affective disorders. However, the mechanisms of action of this drug are not completely elucidated and are still a matter of debate. Since CBZ is not very effective in some epileptic patients and may cause several adverse effects, several antiepileptic drugs have been developed by structural variation of CBZ, such as oxcarbazepine (OXC), which is used in the treatment of epilepsy since 1990. (S)-(–)-10-acetoxy-10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide (BIA 2-093) and 10,11-dihydro-10-hydroxyimino-5H-dibenz[b,f]azepine-5-carboxamide (BIA 2-024), which were recently developed by BIAL, are new putative antiepileptic drugs, with some improved properties. In this review, we will focus on the mechanisms of action of CBZ and its derivatives, OXC, BIA 2-093 and BIA 2-024. The available data indicate that the anticonvulsant efficacy of these AEDs is mainly due to the inhibition of sodium channel activity.  相似文献   

19.
Okada M  Zhu G  Yoshida S  Kanai K  Hirose S  Kaneko S 《Life sciences》2002,72(4-5):465-473
Carbamazepine (CBZ) and zonisamide (ZNS) are effective antiepileptic drugs (AEDs) for the treatment of epilepsy and mood disorder. One of the mechanisms of action of CBZ and ZNS is inactivation of voltage-gated Na+ channel (VGSC). However, the major mechanism(s) of action of these AEDs is not clear yet. We have been exploring novel targeting mechanisms for the antiepileptic actions of CBZ and ZNS during the past ten years. In this report, we describe our hypothesis regarding the new targeting mechanisms for the antiepileptic action of AEDs. We determined an interaction between these AEDs and inhibitors of both voltage-sensitive Ca2+ channels (VSCCs) and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) on neurotransmitter exocytosis using microdialysis. Perfusion with therapeutic concentrations of CBZ and ZNS increased basal neurotransmitter release. This stimulatory action was predominantly inhibited by inhibitors of N-type VSCC and syntaxin. CBZ and ZNS increased Ca2+-evoked release, an action selectively inhibited by inhibitors of N-type VSCC and syntaxin. CBZ and ZNS reduced K+-evoked release, an action predominantly inhibited by inhibitors of P-type VSCCs and synaptobrevin. These actions of CBZ and ZNS on neurotransmitter exocytosis could be observed under the condition of inhibition of VGSC using perfusion with tetrodotoxin. Our findings enhance our understanding of the mechanisms of action of CBZ and ZNS as AEDs, which possibly reduce P-type VSCCs/synaptobrevin-related exocytosis mechanisms during the depolarization stage, and simultaneously enhance N-type VSCCs/syntaxin-related exocytosis mechanisms at the resting stage.  相似文献   

20.
Subjective memory (SM), a self-evaluation of memory, in contrast to objective memory (OM) measured by neuropsychological testing, is less well studied in patients with epilepsy. We assessed SM before and after temporal lobectomy. The Frequency of Forgetting 10 scale (FOF-10), developed to evaluate SM in dementia, was given before and one year after temporal lobectomy. Reliability and validity for use in epilepsy were first assessed. Measures of depression (CES-D) and neuroticism (PANAS) were done before and after surgery as well as complete neuropsychological assessment of OM. Correlation analysis between FOF-10 results and all the other variables was implemented. In 48 patients the FOF-10 was reliable and valid showing high internal consistency in all items (Cronbach''s alpha >0.82) and high reproducibility (p<0.01). The FOF-10 also correlated with the memory assessment clinics self rating scale (MAC-S) (p<0.01). FOF-10 scores improved or were unchanged postoperatively in 28 patients (58%) and worsened in 20 (42%). The FOF-10 did not significantly correlate with memory scores from neuropsychological testing but did correlate with perceived word finding difficulty (p<0.001) and postoperative depression (p<0.05). A reduction in number of antiepileptic drugs (AEDs) after surgery distinguished those with improved postoperative SM. No correlation was found between SM and neuroticism, side of surgery or number of seizures. The FOF-10 is a brief and reliable measure of subjective memory in patients with epilepsy. Perceived memory impairment reflects more emotional state, language problems and quantity of AEDs than actual defects in memory function. These results would potentially be useful in presurgical counselling and management of memory issues after temporal lobe surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号